scholarly journals Glutathione and Glutathione-Like Sequences of Opioid and Aminergic Receptors Bind Ascorbic Acid, Adrenergic and Opioid Drugs Mediating Antioxidant Function: Relevance for Anesthesia and Abuse

2020 ◽  
Vol 21 (17) ◽  
pp. 6230
Author(s):  
Robert Root-Bernstein ◽  
Beth Churchill ◽  
Miah Turke

Opioids and their antagonists alter vitamin C metabolism. Morphine binds to glutathione (l-γ-glutamyl-l-cysteinyl-glycine), an intracellular ascorbic acid recycling molecule with a wide range of additional activities. The morphine metabolite morphinone reacts with glutathione to form a covalent adduct that is then excreted in urine. Morphine also binds to adrenergic and histaminergic receptors in their extracellular loop regions, enhancing aminergic agonist activity. The first and second extracellular loops of adrenergic and histaminergic receptors are, like glutathione, characterized by the presence of cysteines and/or methionines, and recycle ascorbic acid with similar efficiency. Conversely, adrenergic drugs bind to extracellular loops of opioid receptors, enhancing their activity. These observations suggest functional interactions among opioids and amines, their receptors, and glutathione. We therefore explored the relative binding affinities of ascorbic acid, dehydroascorbic acid, opioid and adrenergic compounds, as well as various control compounds, to glutathione and glutathione-like peptides derived from the extracellular loop regions of the human beta 2-adrenergic, dopamine D1, histamine H1, and mu opioid receptors, as well as controls. Some cysteine-containing peptides derived from these receptors do bind ascorbic acid and/or dehydroascorbic acid and the same peptides generally bind opioid compounds. Glutathione binds not only morphine but also naloxone, methadone, and methionine enkephalin. Some adrenergic drugs also bind to glutathione and glutathione-like receptor regions. These sets of interactions provide a novel basis for understanding some ways that adrenergic, opioid and antioxidant systems interact during anesthesia and drug abuse and may have utility for understanding drug interactions.

1998 ◽  
Vol 140 (5) ◽  
pp. 1187-1197 ◽  
Author(s):  
Cynthia I. Foote ◽  
Lan Zhou ◽  
Xing Zhu ◽  
Bruce J. Nicholson

Connexins, like true cell adhesion molecules, have extracellular domains that provide strong and specific homophilic, and in some cases, heterophilic interactions between cells. Though the structure of the binding domains of adhesion proteins have been determined, the extracellular domains of connexins, consisting of two loops of ∼34–37 amino acids each, are not easily studied in isolation from the rest of the molecule. As an alternative, we used a novel application of site-directed mutagenesis in which four of the six conserved cysteines in the extracellular loops of connexin 32 were moved individually and in all possible pairwise and some quadruple combinations. This mapping allowed us to deduce that all disulfides form between the two loops of a single connexin, with the first cysteine in one loop connected to the third of the other. Furthermore, the periodicity of movements that produced functional channels indicated that these loops are likely to form antiparallel β sheets. A possible model that could explain how these domains from apposed connexins interact to form a complete channel is discussed.


Author(s):  
Nadežda Berzina ◽  
Jurijs Markovs ◽  
Mirdza Apsīte ◽  
Svetlana Vasiļjeva ◽  
Galina Smirnova ◽  
...  

The effects of ascorbic acid supplementation on biomarkers of oxidative stress, cadmium accumulation in organs, immune system activity and kidney function in chickens were investigated. The treatment groups of chickens were fed either plain diet or diet supplemented with ascorbic acid at 100, 500, 1000 and 2000 mg/kg for four weeks. Liver and kidney tissues were assayed for cadmium concentration, and the hepatic levels of ascorbic acid and dehydroascorbic acid (DHAA; the oxidised form), malondialdehyde, glutathione, activity of glutathione peroxidase, blood serum uric acid, creatinine, lysozyme and circulating immune complexes were measured. Supplementation with a high dose of ascorbic acid (1000 and 2000 mg/kg in the diet) caused an imbalance between pro-oxidative and antioxidative activities, and induced a suppressive effect on innate immunity. The results suggest that oxidative stress compromises renal function. We observed that ascorbic acid increased cadmium accumulation in a dose-dependent manner.


2016 ◽  
Vol 52 (27) ◽  
pp. 4888-4890 ◽  
Author(s):  
V. N. Carroll ◽  
C. Truillet ◽  
B. Shen ◽  
R. R. Flavell ◽  
X. Shao ◽  
...  

We report the radiosynthesis of an endogenous redox pair, [11C]ascorbic acid and [11C]dehydroascorbic acid and their application to ROS sensing.


1949 ◽  
Vol 21 (6) ◽  
pp. 707-709 ◽  
Author(s):  
M. B. Mills ◽  
C. M. Damron ◽  
J. H. Roe

Sign in / Sign up

Export Citation Format

Share Document