scholarly journals The HGF/Met/NF-κB Pathway Regulates RANKL Expression in Osteoblasts and Bone Marrow Stromal Cells

2020 ◽  
Vol 21 (21) ◽  
pp. 7905
Author(s):  
Masanobu Tsubaki ◽  
Shiori Seki ◽  
Tomoya Takeda ◽  
Akiko Chihara ◽  
Yuuko Arai ◽  
...  

Multiple myeloma (MM)-induced bone disease occurs through hyperactivation of osteoclasts by several factors secreted by MM cells. MM cell-secreted factors induce osteoclast differentiation and activation via direct and indirect actions including enhanced expression of receptor activator of nuclear factor κB ligand (RANKL) in osteoblasts and bone marrow stromal cells (BMSCs). Hepatocyte growth factor (HGF) is elevated in MM patients and is associated with MM-induced bone disease, although the mechanism by which HGF promotes bone disease remains unclear. In the present study, we demonstrated that HGF induces RANKL expression in osteoblasts and BMSCs, and investigated the mechanism of induction. We found that HGF and MM cell supernatants induced RANKL expression in ST2 cells, MC3T3-E1 cells, and mouse BMSCs. In addition, HGF increased phosphorylation of Met and nuclear factor κB (NF-κB) in ST2 cells, MC3T3-E1 cells, or mouse BMSCs. Moreover, Met and NF-κB inhibitors suppressed HGF-induced RANKL expression in ST2 cells, MC3T3-E1 cells, and mouse BMSCs. These results indicated that HGF promotes RANKL expression in osteoblasts and BMSCs via the Met/NF-κB signaling pathway, and Met and NF-κB inhibitors suppressed HGF-induced RANKL expression. Our findings suggest that Met and NF-κB inhibitors are potentially useful in mitigating MM-induced bone disease in patients expressing high levels of HGF.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1844-1844
Author(s):  
Jixin Ding ◽  
Fengming Wang ◽  
ShunQian Jin ◽  
Judy Anderson ◽  
Deborah L. Galson ◽  
...  

Abstract Multiple myeloma (MM) is a plasma cell malignancy that is the most frequent cancer to involve the skeleton. MM bone disease is characterized by the formation of lytic bone lesions adjacent to MM cells that rarely heal even when patients are in long-term remission. This is due to the persistent suppression of bone marrow stromal cell (BMSC) differentiation into osteoblasts. We previously reported that MM cells induce long-lasting suppression of osteoblast differentiation by repression of the Runx2 gene through elevated expression of the transcriptional repressor Gfi1. However, how Gfi1 activity in BMSC is regulated by MM cells remains unclear. Using bioinformatics analysis, we found that there are three putative phosphorylation sites in the Gfi1 protein for Aurora A kinase (AurA) at S216, S326, and T418. We confirmed that Gfi1 was phosphorylated by AurA at multiple sites using an in vitro kinase assay. Co-immunoprecipitation assays revealed that AurA physically interacted with Gfi1 and phosphorylated Gfi1 protein. The interaction with AurA stabilized Gfi1 protein by blocking Gfi1 protein turnover, thereby extending the Gfi1 half-life from 2 hrs to 6 hrs. Further, co-transfection studies using wildtype and mutant AurA and Gfi1 showed that AurA inhibition of Gfi1 protein turnover was dependent on AurA kinase activity and phosphorylation of the S326 and T418 amino acid residues of Gfi1. Studies with co-transfected Myc-ubiquitin, FLAG-Gfi1, and HA-AurA revealed that AurA decreased Gfi1 ubiquitination, thereby leading to increased Gfi1 protein stability. Amino acids S326 and T418 are in Gfi1 zinc fingers (ZF) 3 and 6, respectively. It is known that Gfi1 ZF3, 4, and 5 are required for DNA binding, and that the K403R mutation in ZF6 interferes with DNA binding. Therefore we investigated if AurA phosphorylation of Gfi1 interferes with DNA binding. Chromatin immunoprecipitation and mRunx2 promoter oligo-pull down assays demonstrated that phosphorylated Gfi1 can still bind the Runx2 promoter. However, co-transfection studies with AurA and Gfi1 expression vectors with mRunx2-promoter luciferase reporters demonstrated that AurA phosphorylation of Gfi1 blocked repression of the Runx2 promoter. These data indicate that although AurA increased the amount of Gfi1 protein present on Runx2, AurA phosphorylation of Gfi1 appeared to lock Gfi1 in an “Off” (inactive) status and abrogated Gfi1 repression of Runx2 expression in osteoblast precursor cells. Since AurA phosphorylation of Gfi1 is not blocking DNA binding, the difference between Gfi1 “OFF” and “ON” status probably involves altered protein-protein interactions between Gfi1 and other factors that regulate Runx2 transcription. TNFa treatment, which we showed also represses Runx2 via Gfi1 activity, decreased the AurA protein level in MC-4 osteoblast precursor cells. Importantly, we found that AurA mRNA was decreased in both MC-4 cells treated with MM cells in vitro, and in bone marrow stromal cells isolated from MM patients. In conclusion, these data indicate that MM cells lower the levels of AurA in bone marrow stromal cells, thereby decreasing AurA phosphorylation of Gfi1. This helps to maintain Gfi1 in the “ON” status and allows Gfi1 repression of the Runx2 gene, thereby preventing osteoblast differentiation. These data suggest that AurA is an important regulator of Gfi1 function in MM bone disease. Disclosures: Roodman: Amgen: Membership on an entity’s Board of Directors or advisory committees; Eli Lilly: Research Funding.


1998 ◽  
Vol 141 (6) ◽  
pp. 1467-1476 ◽  
Author(s):  
Gabriel Mbalaviele ◽  
Riko Nishimura ◽  
Akira Myoi ◽  
Maria Niewolna ◽  
Sakamuri V. Reddy ◽  
...  

Osteoclasts are multinucleated cells of hemopoietic origin that are responsible for bone resorption during physiological bone remodeling and in a variety of bone diseases. Osteoclast development requires direct heterotypic cell–cell interactions of the hemopoietic osteoclast precursors with the neighboring osteoblast/stromal cells. However, the molecular mechanisms underlying these heterotypic interactions are poorly understood. We isolated cadherin-6 isoform, denoted cadherin-6/2 from a cDNA library of human osteoclast-like cells. The isolated cadherin-6/2 is 3,423 bp in size consisting of an open reading frame of 2,115 bp, which encodes 705 amino acids. This isoform lacks 85 amino acids between positions 333 and 418 and contains 9 different amino acids in the extracellular domain compared with the previously described cadherin-6. The human osteoclast-like cells also expressed another isoform denoted cadherin-6/1 together with the cadherin-6. Introduction of cadherin-6/2 into L-cells that showed no cell–cell contact caused evident morphological changes accompanied with tight cell–cell association, indicating the cadherin-6/2 we isolated here is functional. Moreover, expression of dominant-negative or antisense cadherin-6/2 construct in bone marrow–derived mouse stromal ST2 cells, which express only cadherin-6/2, markedly impaired their ability to support osteoclast formation in a mouse coculture model of osteoclastogenesis. Our results suggest that cadherin-6 may be a contributory molecule to the heterotypic interactions between the hemopoietic osteoclast cell lineage and osteoblast/bone marrow stromal cells required for the osteoclast differentiation. Since both osteoclasts and osteoblasts/bone marrow stromal cells are the primary cells controlling physiological bone remodeling, expression of cadherin-6 isoforms in these two cell types of different origin suggests a critical role of these molecules in the relationship of osteoclast precursors and cells of osteoblastic lineage within the bone microenvironment.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 683-683
Author(s):  
Maria Rita Pitari ◽  
Marco Rossi ◽  
Cirino Botta ◽  
Eugenio Morelli ◽  
Annamaria Gullà ◽  
...  

Abstract Multiple Myeloma (MM)-related osteolytic lesions of the skeleton result from asynchronous bone turnover wherein increased bone resorption by osteoclasts (OCLs) is associated to suppression of bone formation due to inhibition of osteoblasts (OBLs). In this context, the balance between osteoprotegerin (OPG) and the receptor activator for nuclear factor-κB ligand (RANKL) plays a relevant role, because RANKL signaling induces differentiation, activation and survival of OCLs, whereas OPG acts as a decoy receptor of RANKL, thus blocking bone resorption. In the MM milieu, the interaction of malignant plasma cells (PCs) and bone marrow stromal cells (BMSCs) favors the production of RANKL and reduces OPG secretion by BMSCs. The resulting severe imbalance in RANKL/OPG ratio is the main trigger of MM-related bone disease (BD). Emerging evidence indicates that microRNAs (miRNAs) play a crucial role in bone remodelling as they can act on bone effectors (OCLs, OBLs, BMSCs) and PCs. Indeed, several findings suggest that miR-29 family support OBL differentiation, while we have previously demonstrated that miR-29b is down-regulated during osteoclastogenesis and its enforced expression functionally inhibits terminally differentiated OCLs. Moreover, also miR-21 plays an important role in OCL differentiation and is up-regulated by IL-6 via STAT3 that, in turn, promotes survival and proliferation of PCs, favoring bone damage. On these bases, we investigated whether modulation of miR-21 expression in BMSCs may have an impact on MM microenviroment, focusing our attention on OPG production, taking into account that different bioinformatics resources indicate OPG mRNA as a predicted target of miR-21. To this end, we established a co-culture system where primary BMSCs and HS-5, a human BMSC cell line, were exposed to either RPMI 8226 MM cells or primary CD138+ PCs isolated from MM patients. Then, we isolated BMSCs and evaluated miR-21 and OPG expression. We observed strong up-regulation of miR-21 in BMSCs and HS-5 together with a significant reduction of OPG levels in the presence of MM cells. These preliminary data suggested that antagonizing miR-21 in BMSCs exposed to MM cells could restore RANKL/OPG ratio through the up-regulation of OPG. To address this hypothesis, we transduced HS-5 cell line with a lentiviral vector carrying anti-miR-21 sequence (a21 HS-5) or with an empty lentiviral vector carrying only the GFP gene (GFP CNT HS-5). OPG expression was determined by RT-PCR, Western Blotting and ELISA assays after 48h and 72h of exposure to RPMI 8226 cells or primary PCs. We observed a significant increase in OPG production in a21 HS-5 cells compared to controls (Fig. 1, panel A and panel B). We also evaluated RANKL expression in the same samples. Interestingly, constitutive inhibition of miR-21 in HS-5 cell line upon exposure to MM cells induced a significant RANKL down-regulation, thus restoring a physiological RANKL/OPG ratio. We hypothesized that this surprising result may be due to the activity of the protein inhibitor of activated STAT3 (PIAS3). Indeed, PIAS3 binds to STAT3 and blocks its DNA binding ability, thereby inhibiting STAT3-mediated gene activation. It is already known that PIAS3 acts as a negative regulator of the RANKL expression and it is a direct and validated target of miR-21. Therefore, the inhibition of miR-21 induces PIAS3 up-regulation and a decreased RANKL transcription. To confirm the involvement of PIAS3 in RANKL suppression in our system, we performed a WB assay, showing that in a21 HS-5 cells, PIAS3 is indeed over-expressed compared to controls. Taken together, these findings provide the first evidence that inhibition of miR-21 in MM microenviroment restores RANKL/OPG balance, which might result in prevention of skeletal- related events. These findings support the design of innovative miR-21 inhibition-based approaches against MM-related BD. Supported by the Italian Association for Cancer Research (AIRC) “Special Program Molecular Clinical Oncology - 5 per mille”, PI:P.T., n. 9980, 2010/15.”Fig.1Fig.1. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (26) ◽  
pp. 6871-6880 ◽  
Author(s):  
Sonia D'Souza ◽  
Davide del Prete ◽  
Shunqian Jin ◽  
Quanhong Sun ◽  
Alissa J. Huston ◽  
...  

Abstract Protracted inhibition of osteoblast (OB) differentiation characterizes multiple myeloma (MM) bone disease and persists even when patients are in long-term remission. However, the underlying pathophysiology for this prolonged OB suppression is unknown. Therefore, we developed a mouse MM model in which the bone marrow stromal cells (BMSCs) remained unresponsive to OB differentiation signals after removal of MM cells. We found that BMSCs from both MM-bearing mice and MM patients had increased levels of the transcriptional repressor Gfi1 compared with controls and that Gfi1 was a novel transcriptional repressor of the critical OB transcription factor Runx2. Trichostatin-A blocked the effects of Gfi1, suggesting that it induces epigenetic changes in the Runx2 promoter. MM-BMSC cell-cell contact was not required for MM cells to increase Gfi1 and repress Runx2 levels in MC-4 before OBs or naive primary BMSCs, and Gfi1 induction was blocked by anti–TNF-α and anti–IL-7 antibodies. Importantly, BMSCs isolated from Gfi1−/− mice were significantly resistant to MM-induced OB suppression. Strikingly, siRNA knockdown of Gfi1 in BMSCs from MM patients significantly restored expression of Runx2 and OB differentiation markers. Thus, Gfi1 may have an important role in prolonged MM-induced OB suppression and provide a new therapeutic target for MM bone disease.


2004 ◽  
Vol 20 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Jay J Cao ◽  
Patrick A Singleton ◽  
Sharmila Majumdar ◽  
Benjamin Boudignon ◽  
Andrew Burghardt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document