scholarly journals TaDrAp1 and TaDrAp2, Partner Genes of a Transcription Repressor, Coordinate Plant Development and Drought Tolerance in Spelt and Bread Wheat

2020 ◽  
Vol 21 (21) ◽  
pp. 8296
Author(s):  
Lyudmila Zotova ◽  
Nasgul Shamambaeva ◽  
Katso Lethola ◽  
Badr Alharthi ◽  
Valeriya Vavilova ◽  
...  

Down-regulator associated protein, DrAp1, acts as a negative cofactor (NC2α) in a transcription repressor complex together with another subunit, down-regulator Dr1 (NC2β). In binding to promotors and regulating the initiation of transcription of various genes, DrAp1 plays a key role in plant transition to flowering and ultimately in seed production. TaDrAp1 and TaDrAp2 genes were identified, and their expression and genetic polymorphism were studied using bioinformatics, qPCR analyses, a 40K Single nucleotide polymorphism (SNP) microarray, and Amplifluor-like SNP genotyping in cultivars of bread wheat (Triticum aestivum L.) and breeding lines developed from a cross between spelt (T. spelta L.) and bread wheat. TaDrAp1 was highly expressed under non-stressed conditions, and at flowering, TaDrAp1 expression was negatively correlated with yield capacity. TaDrAp2 showed a consistently low level of mRNA production. Drought caused changes in the expression of both TaDrAp1 and TaDrAp2 genes in opposite directions, effectively increasing expression in lower yielding cultivars. The microarray 40K SNP assay and Amplifluor-like SNP marker, revealed clear scores and allele discriminations for TaDrAp1 and TaDrAp2 and TaRht-B1 genes. Alleles of two particular homeologs, TaDrAp1-B4 and TaDrAp2-B1, co-segregated with grain yield in nine selected breeding lines. This indicated an important regulatory role for both TaDrAp1 and TaDrAp2 genes in plant growth, ontogenesis, and drought tolerance in bread and spelt wheat.

2021 ◽  
Vol 19 (1) ◽  
pp. 20-28
Author(s):  
Abush Tesfaye Abebe ◽  
Adesike Oladoyin Kolawole ◽  
Nnanna Unachukwu ◽  
Godfree Chigeza ◽  
Hailu Tefera ◽  
...  

AbstractSoybean (Glycine max (L.) Merr.) is an important legume crop with high commercial value widely cultivated globally. Thus, the genetic characterization of the existing soybean germplasm will provide useful information for enhanced conservation, improvement and future utilization. This study aimed to assess the extent of genetic diversity of soybean elite breeding lines and varieties developed by the soybean breeding programme of the International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria. The genetic diversity of 65 soybean genotypes was studied using single-nucleotide polymorphism (SNP) markers. The result revealed that 2446 alleles were detected, and the indicators for allelic richness and diversity had good differentiating power in assessing the diversity of the genotypes. The three complementary approaches used in the study grouped the germplasm into three major clusters based on genetic relatedness. The analysis of molecular variance revealed that 71% (P < 0.001) variation was due to among individual genotypes, while 11% (P < 0.001) was ascribed to differences among the three clusters, and the fixation index (FST) was 0.11 for the SNP loci, signifying moderate genetic differentiation among the genotypes. The identified private alleles indicate that the soybean germplasm contains diverse variability that is yet to be exploited. The SNP markers revealed high diversity in the studied germplasm and found to be efficient for assessing genetic diversity in the crop. These results provide valuable information that might be utilized for assessing the genetic variability of soybean and other legume crops germplasm by breeding programmes.


BMC Genetics ◽  
2014 ◽  
Vol 15 (1) ◽  
pp. 54 ◽  
Author(s):  
Hugo R Oliveira ◽  
Jenny Hagenblad ◽  
Matti W Leino ◽  
Fiona J Leigh ◽  
Diane L Lister ◽  
...  

2004 ◽  
Vol 1 (3) ◽  
pp. 181-190 ◽  
Author(s):  
Hao Gang-Ping ◽  
Wu Zhong-Yi ◽  
Chen Mao-Sheng ◽  
Cao Ming-Qing ◽  
Dominique Brunel ◽  
...  

AbstractThe levels of drought tolerance and nucleotide polymorphism at the CBF4 locus were examined in a world-wide sample of 17 core accessions of Arabidopsis thaliana. The results showed that different accessions exhibited considerable differences in adaptation to drought stress. Compared with Columbia accession, the frequency of nucleotide polymorphism at the CBF4 locus of 25av, 203av and 244av accessions, including single nucleotide polymorphism (SNP) and insertion/deletion (Indel), was high, on average 1 SNP per 35.8 bp and 1 Indel per 143 bp. No significance in all regions of Tajima's D test indicated that the neutral mutation hypothesis could explain the nucleotide polymorphism in this CBF4 gene region. The higher polymorphism was the result of purification selection. Nucleotide polymorphism in the non-coding region was three times higher than in the coding region. This might indicate a recent relaxation of selection pressures on the non-coding region of CBF4 gene. In the coding region of CBF4, SNP frequency was 1 SNP per 96.4 bp and one non-synonymous mutation was detected from 25av, 203av and 244av accessions: the amino acid variation gly↔val at position 205, caused by the nucleotide variation G↔T at position 1034 (corresponding to the nucleotide at position 19 696 of GenBank accession no. AB015478 as 1). Furthermore, four differential SNPs were discovered in haplotype 6 constituted by 203av, one of them located in the 3′ non-coding region (A↔C at position 1106) and the others in the 5′ non-coding region (A↔G, A↔C and G↔A at positions 27, 129 and 171, respectively). The drought tolerance assay indicated that accession 203av was the best at tolerating water deficiency. We propose that haplotype 6 is consistent with its drought tolerance.


2015 ◽  
Vol 52 (1) ◽  
pp. 85-89 ◽  
Author(s):  
Matthew Edwards ◽  
Sally Brescianini ◽  
Catherine Allgood ◽  
Michael Freelander ◽  
Richard Dunstan ◽  
...  

2009 ◽  
Vol 36 (7) ◽  
pp. 575 ◽  
Author(s):  
Jason A. Able ◽  
Wayne Crismani ◽  
Scott A. Boden

Over the past 50 years, the understanding of meiosis has aged like a fine bottle of wine: the complexity is developing but the wine itself is still young. While emphasis in the plant kingdom has been placed on the model diploids Arabidopsis (Arabidopsis thaliana L.) and rice (Orzya sativa L.), our research has mainly focussed on the polyploid, bread wheat (Triticum aestivum L.). Bread wheat is an important food source for nearly two-thirds of the world’s population. While creating new varieties can be achieved using existing or advanced breeding lines, we would also like to introduce beneficial traits from wild related species. However, expanding the use of non-adapted and wild germplasm in cereal breeding programs will depend on the ability to manipulate the cellular process of meiosis. Three important and tightly-regulated events that occur during early meiosis are chromosome pairing, synapsis and recombination. Which key genes control these events in meiosis (and how they do so) remains to be completely answered, particularly in crops such as wheat. Although the majority of published findings are from model organisms including yeast (Saccharomyces cerevisiae) and the nematode Caenorhabditis elegans, information from the plant kingdom has continued to grow in the past decade at a steady rate. It is with this new knowledge that we ask how meiosis will contribute to the future of cereal breeding. Indeed, how has it already shaped cereal breeding as we know it today?


Sign in / Sign up

Export Citation Format

Share Document