scholarly journals Deficit in Adipose Differentiation in Mesenchymal Stem Cells Derived from Chronic Rhinosinusitis Nasal Polyps Compared to Nasal Mucosal Tissue

2020 ◽  
Vol 21 (23) ◽  
pp. 9214
Author(s):  
Emanuela Chiarella ◽  
Nicola Lombardo ◽  
Nadia Lobello ◽  
Giovanna Lucia Piazzetta ◽  
Helen Linda Morrone ◽  
...  

Chronic rhinosinusitis of the nasal mucosa is an inflammatory disease of paranasal sinuses, which causes rhinorrhea, nasal congestion, and hyposmia, and in some cases, it can result in the development of nasal polyposis. Nasal polyps are benign lobular-shaped growths that project in the nasal cavities; they originate from inflammation in the paranasal mucous membrane and are associated with a high expression of interleukins (IL)-4, IL-5, IL-13, and IgE. Polyps derive from the epithelial–mesenchymal transition of the nasal epithelium resulting in a nasal tissue remodeling. Nasal polyps from three patients with chronic rhinosinusitis as well as control non-polyp nasal mucosa were used to isolate and cultivate mesenchymal stem cells characterized as CD73+, CD90+, CD105+/CD14−, CD34−, and CD45−. Mesenchymal stem cells (MSCs) cultures were induced to differentiate toward adipocytes, where lipid droplets and adipocyte genes PPARγ2, ADIPO-Q, and FABP4 were observed in control non-polyp nasal mucosa-derived mesenchymal cells but were scarcely present in the cultures derived from the nasal polyps, where apoptosis was evident. The modulation of the response to adipogenic stimulus in polyps represents a change in the molecular response that controls the cascade required for differentiation as well as possible means to specifically target these cells, sparing the normal mucosa of the nasal sinuses.

2020 ◽  
Vol 21 (18) ◽  
pp. 6878 ◽  
Author(s):  
Emanuela Chiarella ◽  
Nicola Lombardo ◽  
Nadia Lobello ◽  
Annamaria Aloisio ◽  
Teodoro Aragona ◽  
...  

Chronic rhinosinusitis is a common inflammatory disease of paranasal sinuses, which causes rhinorrhea, nasal congestion, and hyposmia. The genetic predisposition or the exposure to irritants can sustain the inflammatory response and the development of nasal polyposis. Nasal polyps are benign and teardrop-shaped growths that project in the nasal cavities, and originate from the ethmoid sinuses. This inflammatory process is associated with high expression of IL-4, IL-5 and IL-13 and IgE. Antibodies targeting these cytokines or receptors represent a therapeutic strategy in the treatment of nasal polyposis in combination with corticosteroids. The molecular pathogenesis of nasal polyps in chronic rhinosinusitis (CRS) patients is associated with remodeling transition, a process in which epithelial cells lose their typical phenotype, acquiring a mesenchymal-like aspect. TGFβ/SMAD, ERK, and Wnt/β-catenin pathways are altered during the nasal tissue remodeling. miRNA and inhibitor molecules targeting these signaling pathways are able to interfere with the process; which could lead to alternative therapies. Nasal polyps are an alternative source of mesenchymal stem cells, which can be isolated from surgical biopsies. A molecular understanding of the biology of PO-MSCs will contribute to the delineating inflammatory process underlying the development of nasal polyps.


Author(s):  
Emanuela Chiarella ◽  
Nicola Lombardo ◽  
Nadia Lobello ◽  
Annamaria Aloisio ◽  
Teodoro Aragona ◽  
...  

Chronic rhinosinusitis is a common inflammatory disease of paranasal sinuses, which causes rhinorrhea, nasal congestion and hyposmia. The genetic predisposition or the exposure to irritants can sustain the inflammatory response and the development of nasal polyposis. Nasal polyps are benign and teardrop-shaped growths that project in the nasal cavities and originate from the ethmoid sinuses. This inflammatory process is associated with high expression of IL-5 cytokine and infiltration of eosinophils. Humanized monoclonal antibodies targeting IL-5 or its receptor, represent a therapeutic strategy in the treatment of nasal polyposis in combination with corticosteroids. The molecular pathogenesis of nasal polyps in CRS patients is associated to the epithelial-mesenchymal transition (EMT), a process in which epithelial cells lose their typical phenotype acquiring a mesenchymal phenotype. TGFβ/SMAD, ERK, and Wnt/β-catenin pathways are altered in EMT during the nasal tissue remodeling. miRNA and inhibitor molecules targeting these altered signaling pathways are able to interfere with EMT; which could lead to alternative therapies. Nasal polyps are an alternative source of mesenchymal stem cells which can be easily isolated from surgical biopsies. A molecular understanding of the biology of PO-MSCs will contribute to delineating inflammatory process underlying the development of nasal polyps.


2018 ◽  
Vol 19 (12) ◽  
pp. 3968 ◽  
Author(s):  
Enrico Spugnini ◽  
Mariantonia Logozzi ◽  
Rossella Di Raimo ◽  
Davide Mizzoni ◽  
Stefano Fais

Metastatic diffusion is thought to be a multi-step phenomenon involving the release of cells from the primary tumor and their diffusion through the body. Currently, several hypotheses have been put forward in order to explain the origin of cancer metastasis, including epithelial–mesenchymal transition, mutagenesis of stem cells, and a facilitating role of macrophages, involving, for example, transformation or fusion hybridization with neoplastic cells. In this paradigm, tumor-secreted extracellular vesicles (EVs), such as exosomes, play a pivotal role in cell communications, delivering a plethora of biomolecules including proteins, lipids, and nucleic acids. For their natural role in shuttling molecules, EVs have been newly considered a part of the metastatic cascade. They have a prominent role in preparing the so-called “tumor niches” in target organs. However, recent evidence has pointed out an even more interesting role of tumor EVs, consisting in their ability to induce malignant transformation in resident mesenchymal stem cells. All in all, in this review, we discuss the multiple involvements of EVs in the metastatic cascade, and how we can exploit and manipulate EVs in order to reduce the metastatic spread of malignant tumors.


Sign in / Sign up

Export Citation Format

Share Document