metastatic cascade
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 71)

H-INDEX

27
(FIVE YEARS 6)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Ying Yu ◽  
Bing Liu ◽  
Xuexiang Li ◽  
Dingheng Lu ◽  
Likun Yang ◽  
...  

AbstractThe survival of cancer cells after detaching from the extracellular matrix (ECM) is essential for the metastatic cascade. The programmed cell death after detachment is known as anoikis, acting as a metastasis barrier. However, the most aggressive cancer cells escape anoikis and other cell death patterns to initiate the metastatic cascade. This study revealed the role of cell migration-inducing protein (CEMIP) in autophagy modulation and anoikis resistance during ECM detachment. CEMIP amplification during ECM detachment resulted in protective autophagy induction via a mechanism dependent on the dissociation of the B-cell lymphoma-2 (Bcl-2)/Beclin1 complex. Additional investigation revealed that acting transcription factor 4 (ATF4) triggered CEMIP transcription and enhanced protein kinase C alpha (PKCα) membrane translocation, which regulated the serine70 phosphorylation of Bcl-2, while the subsequent dissociation of the Bcl-2/Beclin1 complex led to autophagy. Therefore, CEMIP antagonization attenuated metastasis formation in vivo. In conclusion, inhibiting CEMIP-mediated protective autophagy may provide a therapeutic strategy for metastatic prostate cancer (PCa). This study delineates a novel role of CEMIP in anoikis resistance and provides new insight into seeking therapeutic strategies for metastatic PCa.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6362
Author(s):  
Federica Francescangeli ◽  
Valentina Magri ◽  
Maria Laura De Angelis ◽  
Gianluigi De Renzi ◽  
Orietta Gandini ◽  
...  

Circulating tumor cells (CTCs) detach from a primary tumor or its metastases and circulate in the bloodstream. The vast majority of CTCs are deemed to die into the bloodstream, with only few cells representing viable metastatic precursors. Particularly, single epithelial CTCs do not survive long in the circulation due to the loss of adhesion-dependent survival signals. In metastatic colorectal cancer, the generation of large CTC clusters is a very frequent occurrence, able to increase the aptitude of CTCs to survive in the bloodstream. Although a deepened analysis of large-sized CTC clusters might certainly offer new insights into the complexity of the metastatic cascade, most CTC isolation techniques are unfortunately not compatible with large-sized CTC clusters isolation. The inappropriateness of standard CTC isolation devices for large clusters isolation and the scarce availability of detection methods able to specifically isolate and characterize both single CTCs and CTC clusters finally prevented in-depth studies on the prognostic and predictive value of clusters in clinical practice, unlike that which has been described for single CTCs. In the present study, we validated a new sequential filtration method for the simultaneous isolation of large CTC clusters and single CTCs in patients with metastatic colorectal cancer at failure of first-line treatments. The new method might allow differential downstream analyses for single and clustered CTCs starting from a single blood draw, opening new scenarios for an ever more precise characterization of colorectal cancer metastatic cascade.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3435
Author(s):  
Ewa Nowak ◽  
Ilona Bednarek

Epithelial to mesenchymal transition (EMT) occurs during the pathological process associated with tumor progression and is considered to influence and promote the metastatic cascade. Characterized by loss of cell adhesion and apex base polarity, EMT enhances cell motility and metastasis. The key markers of the epithelial to mesenchymal transition are proteins characteristic of the epithelial phenotype, e.g., E-cadherin, cytokeratins, occludin, or desmoplakin, the concentration and activity of which are reduced during this process. On the other hand, as a result of acquiring the characteristics of mesenchymal cells, an increased amount of N-cadherin, vimentin, fibronectin, or vitronectin is observed. Importantly, epithelial cells undergo partial EMT where some of the cells show both epithelial and mesenchymal characteristics. The significant influence of epigenetic regulatory mechanisms is observed in the gene expression involved in EMT. Among the epigenetic modifications accompanying incorrect genetic reprogramming in cancer are changes in the level of DNA methylation within the CpG islands and posttranslational covalent changes of histone proteins. All observed modifications, which are stable but reversible changes, affect the level of gene expression leading to the development and progression of the disease, and consequently affect the uncontrolled growth of the population of cancer cells.


2021 ◽  
Vol 1876 (2) ◽  
pp. 188628
Author(s):  
Andrew Cannon ◽  
Christopher M. Thompson ◽  
Rakesh Bhatia ◽  
Rakhee R.K. Kandy ◽  
Joyce C. Solheim ◽  
...  

2021 ◽  
Author(s):  
Deanna Ng ◽  
Aiman Ali ◽  
Kiera Lee ◽  
Denise Eymael ◽  
Kento Abe ◽  
...  

Peritoneal metastases (PM) portend limited survival in patients with Gastric Adenocarcinoma (GCa), and strategies to prevent and/or more effectively treat PM are needed. Existing models are limited in recapitulating key elements of the peritoneal metastatic cascade. To explore the underlying cellular and molecular mechanisms of PM, we have developed an ex vivo human peritoneal explant model. Fresh peritoneal tissue samples were obtained from patients undergoing abdominal surgery and suspended, mesothelial layer down but without direct contact, above a monolayer of red-fluorescent stained AGS human GCa cells for 24hrs, then washed and cultured for a further 3 days. Implantation and invasion of GCa cells within the explant were examined using real-time confocal fluorescence microscopy. Superficial implantation of AGS GCa cells within the mesothelial surface was readily detected, and colonies expanded over 3 days. To investigate the sensitivity of the model to altered GCa cellular implantation, we stably transfected AGS cells with E-Cadherin, restoring the E-Cadherin that they otherwise lack. This markedly suppressed implantation and invasion of AGS cells into the submesothelial mesenchymal layer. Here we show that this ex vivo human peritoneal explant model is responsive to manipulation of genetic factors that regulate peritoneal implantation and invasion by GCa cells, with reproducible results.


2021 ◽  
Author(s):  
Mohammad Kamalabadi Farahani ◽  
Amir Atashi ◽  
Fateme Sadat Bitaraf ◽  
Roqaye Karimi ◽  
Mohammad Masoud Eslami

Abstract Background Brain metastasis is a lethal complication in triple negative breast cancer (TNBC) patients. Many factors including tumor cell molecular characteristics and biological environment are the main determinant in the brain metastasis process. Matrix metalloproteinases (MMPs) play a key role in extracellular matrix degradation, implicated in numerous aspects of metastasis processes of breast cancer. Methods After development of syngenic animal model of TNBC, primary breast cancer cells named 4T1T were isolated from tumor mass. Highly metastatic tumor cells named 4T1B were isolated and expanded from brain metastasis lesions of cancerous mice. Quantitative real-time polymerase chain reaction and gelatinase zymography were performed to analyze the expression of MMPs in transcriptomic and proteomic level in 4T1T and 4T1B. Results Our data revealed that, expression of MMPs was significantly upregulated in brain metastatic tumor cells. In transcriptomic level, MMP-2 and MMP-9 genes expression were up-regulated 4 and 3.4 folds in 4T1B, respectively. Zymographic analysis could be detect MMPs activity only in 4T1B. Conclusion These findings provided important insights regarding the gross alteration of MMPs expression in brain metastatic cascade of TNBC for the first time. Analysis of molecular properties of brain metastatic tumor cells can be used for understanding of molecular and genetic aspects of brain metastasis and also designing a targeted therapeutic strategies in combat with brain metastasis of TNBC.


Author(s):  
Sophia G. Kisling ◽  
Gopalakrishnan Natarajan ◽  
Ramesh Pothuraju ◽  
Ashu Shah ◽  
Surinder K. Batra ◽  
...  

AbstractPancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of 10%. The occurrence of metastasis, among other hallmarks, is the main contributor to its poor prognosis. Consequently, the elucidation of metastatic genes involved in the aggressive nature of the disease and its poor prognosis will result in the development of new treatment modalities for improved management of PC. There is a deep interest in understanding underlying disease pathology, identifying key prognostic genes, and genes associated with metastasis. Computational approaches, which have become increasingly relevant over the last decade, are commonly used to explore such interests. This review aims to address global studies that have employed global approaches to identify prognostic and metastatic genes, while highlighting their methods and limitations. A panel of 48 prognostic genes were identified across these studies, but only five, including ANLN, ARNTL2, PLAU, TOP2A, and VCAN, were validated in multiple studies and associated with metastasis. Their association with metastasis has been further explored here, and the implications of these genes in the metastatic cascade have been interpreted.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1242
Author(s):  
Tania Rossi ◽  
Giulia Gallerani ◽  
Giovanni Martinelli ◽  
Roberta Maltoni ◽  
Francesco Fabbri

Breast cancer (BC) is a disease characterized by high degrees of heterogeneity at morphologic, genomic, and genetic levels, even within the same tumor mass or among patients. As a consequence, different subpopulations coexist and less represented clones may have a selective advantage, significantly influencing the outcome of BC patients. Circulating tumor cells (CTCs) represent a rare population of cells with a crucial role in metastatic cascade, and in recent years have represented a fascinating alternative to overcome the heterogeneity issue as a “liquid biopsy”. However, besides the raw enumeration of these cells in advanced epithelial tumors, there are no CTC-based assays applied in the clinical practice to improve personalized medicine. In this review, we report the latest findings in the field of CTCs for intra-tumoral heterogeneity unmasking in BC, supporting the need to deepen their analysis to investigate their role in metastatic process and include the molecular characterization in the clinical practice. In the future, CTCs will be helpful in monitoring patients during treatment, as well as to better address therapeutic strategies.


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4440
Author(s):  
Sarah Libring ◽  
Ángel Enríquez ◽  
Hyowon Lee ◽  
Luis Solorio

Worldwide, there are currently around 18.1 million new cancer cases and 9.6 million cancer deaths yearly. Although cancer diagnosis and treatment has improved greatly in the past several decades, a complete understanding of the complex interactions between cancer cells and the tumor microenvironment during primary tumor growth and metastatic expansion is still lacking. Several aspects of the metastatic cascade require in vitro investigation. This is because in vitro work allows for a reduced number of variables and an ability to gather real-time data of cell responses to precise stimuli, decoupling the complex environment surrounding in vivo experimentation. Breakthroughs in our understanding of cancer biology and mechanics through in vitro assays can lead to better-designed ex vivo precision medicine platforms and clinical therapeutics. Multiple techniques have been developed to imitate cancer cells in their primary or metastatic environments, such as spheroids in suspension, microfluidic systems, 3D bioprinting, and hydrogel embedding. Recently, magnetic-based in vitro platforms have been developed to improve the reproducibility of the cell geometries created, precisely move magnetized cell aggregates or fabricated scaffolding, and incorporate static or dynamic loading into the cell or its culture environment. Here, we will review the latest magnetic techniques utilized in these in vitro environments to improve our understanding of cancer cell interactions throughout the various stages of the metastatic cascade.


2021 ◽  
Author(s):  
Wessel Rodenburg ◽  
Jaap van Buul

Extravasation, the process by which tumor cells leave the circulation by transmigrating through the endothelium that lines blood vessel walls, is an essential step for metastasis towards distant organs. As such, reducing extravasation of cancer cells is a potential approach to inhibit metastasis. Rho GTPases are small signalling G-proteins that are central regulators of cytoskeleton dynamics, and thereby mediate several steps of the metastatic cascade, including invasion, migration, and extravasation of cancer cells. Additionally, RhoGTPase signalling networks regulate cancer cell-endothelial cell interactions and are involved in the disruption of the endothelial barrier function, allowing cancer cells to extravasate the underlying tissue. Thus, targeting Rho GTPase signalling networks may be an effective approach to inhibit extravasation and metastasis. In this review, the roles and regulation of Rho GTPase signalling networks in cancer cell extravasation will be discussed, both from a cancer cell and endothelial cell point of view.


Sign in / Sign up

Export Citation Format

Share Document