scholarly journals Hyaluronic Acid-Targeted Stimuli-Sensitive Nanomicelles Co-Encapsulating Paclitaxel and Ritonavir to Overcome Multi-Drug Resistance in Metastatic Breast Cancer and Triple-Negative Breast Cancer Cells

2021 ◽  
Vol 22 (3) ◽  
pp. 1257 ◽  
Author(s):  
Vrinda Gote ◽  
Amar Deep Sharma ◽  
Dhananjay Pal

Active targeting and overcoming multi-drug resistance (MDR) can be some of the important attributes of targeted therapy for metastatic breast cancer (MBC) and triple-negative breast cancer (TNBC) treatment. In this study, we constructed a hyaluronic acid (HA)-decorated mixed nanomicelles-encapsulating chemotherapeutic agent paclitaxel (PTX) and P-glycoprotein inhibitor ritonavir (RTV). HA was conjugated to poly (lactide) co-(glycolide) (PLGA) polymer by disulfide bonds (HA-ss-PLGA). HA is a natural ligand for CD44 receptors overexpressed in breast cancer cells. Disulfide bonds undergo rapid reduction in the presence of glutathione, present in breast cancer cells. The addition of RTV can inhibit the P-gp and CYP3A4-mediated metabolism of PTX, thus aiding in reversing MDR and sensitizing the cells toward PTX. An in vitro uptake and cytotoxicity study in MBC MCF-7 and TNBC MDA-MB-231 cell lines demonstrated the effective uptake of the nanomicelles and drug PTX compared to non-neoplastic breast epithelium MCF-12A cells. Interestingly, in vitro potency determination showed a reduction in mitochondrial membrane potential and reactive oxygen species in breast cancer cell lines, indicating effective apoptosis of cancer cells. Thus, stimuli-sensitive nanomicelles along with HA targeting and RTV addition can effectively serve as a chemotherapeutic drug delivery agent for MBC and TNBC.

2021 ◽  
Author(s):  
xingang wang ◽  
YAN ZHENG ◽  
YU WANG

Abstract Background and AimsPseudopodium-enriched atypical kinase 1 (PEAK1) has reported to be upregulated in human malignancies and related with poor prognosis. Enhanced PEAK1 expression facilitates tumor cell survival, invasion, metastasis and chemoresistance. However, the role of PEAK1 in breast cancer is not clear. Here, we investigated the PEAK1 expression in breast cancer and analyzed its relation with clinicopathological status and chemotherapy resistance to the neoadjuvant chemotherapy (NAC). We also investigated the role of PEAK1 on breast cancer cells in vitro and in vivo. MethodsImmunohistochemistry (IHC) was performed in 112 surgical resected breast cancer tissues. The associations between clinicopathological status, multi-drug resistance and PEAK1 expression were determined. Effect of PEAK1 overexpression or down-expression on proliferation, colony formation, invasion, migration, metastasis and Doxorubicin sensitivity in the MCF-7 cells in vitro and in vivo was detected. ResultsPEAK1 was overexpressed in breast cancer tissues and NAC -resistant breast cancer tissues. High PEAK1 expression was related with tumor size, high tumor grade, T stage, LN metastasis, recurrence, Ki-67 expression, Her-2 expression and multi-drug resistance. Targeting PEAK1 inhibited cell growth, invasion, metastasis and reversed chemoresistance to Doxorubicin in breast cancer cells in vitro and in vivo. ConclusionHigh PEAK1 expression was associated with invasion, metastasis and chemoresistance of breast cancers. Furthermore, targeting PEAK1 could inhibit cell growth and metastasis, and reverse chemoresistance in breast cancer cells, which provides an effective treatment strategies for breast cancer.


2018 ◽  
Vol 16 (2) ◽  
pp. 127-137
Author(s):  
Paula Sofia Coutinho Medeiros ◽  
Ana Lúcia Marques Batista de Carvalho ◽  
Cristina Ruano ◽  
Juan Carlos Otero ◽  
Maria Paula Matos Marques

Background: The impact of the ubiquitous dietary phenolic compound p-coumaric acid on human breast cancer cells was assessed, through a multidisciplinary approach: Combined biological assays for cytotoxicity evaluation and biochemical profiling by Raman microspectroscopic analysis in cells. </P><P> Methods: Para-coumaric acid was shown to exert in vitro chemoprotective and antitumor activities, depending on the concentration and cell line probed: a significant anti-invasive ability was detected for the triple-negative MDA-MB-231 cells, while a high pro-oxidant effect was found for the estrogen- dependent MCF-7 cells. A striking cell selectivity was obtained, with a more noticeable outcome on the triple-negative MDA-MB-231 cell line. Results: The main impact on the cellular biochemical profile was verified to be on proteins and lipids, thus justifying the compound´s anti-invasive effect and chemoprotective ability. Conclusion: p-Coumaric acid was thus shown to be a promising chemoprotective/chemotherapeutic agent, particularly against the low prognosis triple-negative human breast adenocarcinoma.


Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1366
Author(s):  
Russell Hughes ◽  
Xinyue Chen ◽  
Natasha Cowley ◽  
Penelope D. Ottewell ◽  
Rhoda J. Hawkins ◽  
...  

Metastatic breast cancer in bone is incurable and there is an urgent need to develop new therapeutic approaches to improve survival. Key to this is understanding the mechanisms governing cancer cell survival and growth in bone, which involves interplay between malignant and accessory cell types. Here, we performed a cellular and molecular comparison of the bone microenvironment in mouse models representing either metastatic indolence or growth, to identify mechanisms regulating cancer cell survival and fate. In vivo, we show that regardless of their fate, breast cancer cells in bone occupy niches rich in osteoblastic cells. As the number of osteoblasts in bone declines, so does the ability to sustain large numbers of breast cancer cells and support metastatic outgrowth. In vitro, osteoblasts protected breast cancer cells from death induced by cell stress and signaling via gap junctions was found to provide important juxtacrine protective mechanisms between osteoblasts and both MDA-MB-231 (TNBC) and MCF7 (ER+) breast cancer cells. Combined with mathematical modelling, these findings indicate that the fate of DTCs is not controlled through the association with specific vessel subtypes. Instead, numbers of osteoblasts dictate availability of protective niches which breast cancer cells can colonize prior to stimulation of metastatic outgrowth.


2020 ◽  
Vol 107 ◽  
pp. 65-77 ◽  
Author(s):  
Akshay A. Narkhede ◽  
James H. Crenshaw ◽  
David K. Crossman ◽  
Lalita A. Shevde ◽  
Shreyas S. Rao

2016 ◽  
Vol 38 (3) ◽  
pp. 1003-1014 ◽  
Author(s):  
Aiyu Zhu ◽  
Yan Li ◽  
Wei Song ◽  
Yumei Xu ◽  
Fang Yang ◽  
...  

Background/Aims: Androgen receptor (AR), a steroid hormone receptor, has recently emerged as prognostic and treatment-predictive marker in breast cancer. Previous studies have shown that AR is widely expressed in up to one-third of triple-negative breast cancer (TNBC). However, the role of AR in TNBC is still not fully understood, especially in mesenchymal stem-like (MSL) TNBC cells. Methods: MSL TNBC MDA-MB-231 and Hs578T breast cancer cells were exposed to various concentration of agonist 5-α-dihydrotestosterone (DHT) or nonsteroidal antagonist bicalutamide or untreated. The effects of AR on cell viability and apoptosis were determined by MTT assay, cell counting, flow cytometry analysis and protein expression of p53, p73, p21 and Cyclin D1 were analyzed by western blotting. The bindings of AR to p73 and p21 promoter were detected by ChIP assay. MDA-MB-231 cells were transplanted into nude mice and the tumor growth curves were determined and expression of AR, p73 and p21 were detected by Immunohistochemistry (IHC) staining after treatment of DHT or bicalutamide. Results: We demonstrate that AR agonist DHT induces MSL TNBC breast cancer cells proliferation and inhibits apoptosis in vitro. Similarly, activated AR significantly increases viability of MDA-MB-231 xenografts in vivo. On the contrary, AR antagonist, bicalutamide, causes apoptosis and exerts inhibitory effects on the growth of breast cancer. Moreover, DHT-dependent activation of AR involves regulation in the cell cycle related genes, including p73, p21 and Cyclin D1. Further investigations indicate the modulation of AR on p73 and p21 mediated by direct binding of AR to their promoters, and DHT could make these binding more effectively. Conclusions: Our study demonstrates the tumorigenesis role of AR and the inhibitory effect of bicalutamide in AR-positive MSL TNBC both in vitro and in vivo, suggesting that AR inhibition could be a potential therapeutic approach for AR-positive TNBC patients.


BMC Cancer ◽  
2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Susanne Schüler-Toprak ◽  
Julia Häring ◽  
Elisabeth C. Inwald ◽  
Christoph Moehle ◽  
Olaf Ortmann ◽  
...  

2018 ◽  
Vol 172 (3) ◽  
pp. 713-723 ◽  
Author(s):  
Patricia Midori Murobushi Ozawa ◽  
Faris Alkhilaiwi ◽  
Iglenir João Cavalli ◽  
Danielle Malheiros ◽  
Enilze Maria de Souza Fonseca Ribeiro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document