scholarly journals Ablative Radiotherapy Reprograms the Tumor Microenvironment of a Pancreatic Tumor in Favoring the Immune Checkpoint Blockade Therapy

2021 ◽  
Vol 22 (4) ◽  
pp. 2091
Author(s):  
Yu-Hung Lee ◽  
Ching-Fang Yu ◽  
Ying-Chieh Yang ◽  
Ji-Hong Hong ◽  
Chi-Shiun Chiang

The low overall survival rate of patients with pancreatic cancer has driven research to seek a new therapeutic protocol. Radiotherapy (RT) is frequently an option in the neoadjuvant or palliative settings for pancreatic cancer treatment. This study explored the effect of RT protocols on the tumor microenvironment (TME) and their consequent impact on anti-programmed cell death ligand-1 (PD-L1) therapy. Using a murine orthotopic pancreatic tumor model, UN-KC-6141, RT-disturbed TME was examined by immunohistochemical staining. The results showed that ablative RT is more effective than fractionated RT at recruiting T cells. On the other hand, fractionated RT induces more myeloid-derived suppressor cell infiltration than ablative RT. The RT-disturbed TME presents a higher perfusion rate per vessel. The increase in vessel perfusion is associated with a higher amount of anti-PD-L1 antibody being delivered to the tumor. Animal survival is increased by anti-PD-L1 therapy after ablative RT, with 67% of treated animals surviving more than 30 days after tumor inoculation compared to a median survival time of 16.5 days for the control group. Splenocytes isolated from surviving animals were specifically cytotoxic for UN-KC-6141 cells. We conclude that the ablative RT-induced TME is more suited than conventional RT-induced TME to combination therapy with immune checkpoint blockade.

2021 ◽  
Vol 15 ◽  
pp. 117955492110355
Author(s):  
Tianhang Li ◽  
Tianyao Liu ◽  
Wenjie Zhu ◽  
Shangxun Xie ◽  
Zihan Zhao ◽  
...  

Immune-checkpoint blockade (ICB) demonstrated inspiring effect and great promise in anti-cancer therapy. However, many obstacles, such as drug resistance and difficulty in patient selection, limited the efficacy of ICB therapy and awaited to be overcome. By timely identification and intervention of the key immune-suppressive promotors in the tumor microenvironment (TME), we may better understand the mechanisms of cancer immune-escape and use novel strategies to enhance the therapeutic effect of ICB. Myeloid-derived suppressor cell (MDSC) is recognized as a major immune suppressor in the TME. In this review, we summarized the roles MDSC played in the cancer context, focusing on its negative biologic functions in ICB therapy, discussed the strategies targeted on MDSC to optimize the diagnosis and therapy process of ICB and improve the efficacy of ICB therapy against malignancies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Farias ◽  
A. Soto ◽  
F. Puttur ◽  
C. J. Goldin ◽  
S. Sosa ◽  
...  

AbstractBrucella lumazine synthase (BLS) is a homodecameric protein that activates dendritic cells via toll like receptor 4, inducing the secretion of pro-inflammatory cytokines and chemokines. We have previously shown that BLS has a therapeutic effect in B16 melanoma-bearing mice only when administered at early stages of tumor growth. In this work, we study the mechanisms underlying the therapeutic effect of BLS, by analyzing the tumor microenvironment. Administration of BLS at early stages of tumor growth induces high levels of serum IFN-γ, as well as an increment of hematopoietic immune cells within the tumor. Moreover, BLS-treatment increases the ratio of effector to regulatory cells. However, all treated mice eventually succumb to the tumors. Therefore, we combined BLS administration with anti-PD-1 treatment. Combined treatment increases the outcome of both monotherapies. In conclusion, we show that the absence of the therapeutic effect at late stages of tumor growth correlates with low levels of serum IFN-γ and lower infiltration of immune cells in the tumor, both of which are essential to delay tumor growth. Furthermore, the combined treatment of BLS and PD-1 blockade shows that BLS could be exploited as an essential immunomodulator in combination therapy with an immune checkpoint blockade to treat skin cancer.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii108-ii108
Author(s):  
Jayeeta Ghose ◽  
Baisakhi Raychaudhuri ◽  
Kevin Liu ◽  
William Jiang ◽  
Pooja Gulati ◽  
...  

Abstract BACKGROUND Glioblastoma (GBM) is associated with systemic and intratumoral immunosuppression. Part of this immunosuppression is mediated by myeloid derived suppressor cells (MDSCs). Preclinical evidence shows that ibrutinib, a tyrosine kinase inhibitor FDA approved for use in chronic lymphocytic leukemia and known to be CNS penetrant, can decrease MDSC generation and function. Also, focal radiation therapy (RT) synergizes with anti-PD-1 therapy in mouse GBM models. Thus, we aimed to test the combination of these approaches on immune activation and survival in a preclinical immune-intact GBM mouse model. METHODS C57BL/6 mice intracranially implanted with the murine glioma cell line GL261-Luc2 were divided into 8 groups consisting of treatments with ibrutinib, RT (10 Gy SRS), or anti-PD-1 individually or in each combination (along with a no treatment control group). Immune cell subset changes (flow-cytometry) and animal survival (Kaplan-Meier) were assessed (n=10 mice per group). RESULTS Median survival of the following groups including control (28 days), ibrutinib (27 days), RT (30 days) or anti-PD-1 (32 days) showed no significant differences. However, a significant improvement in median survival was seen in mice given combinations of ibrutinib+RT (35 days), ibrutinib+anti-PD-1 (38 days), and triple therapy with ibrutinib+RT+anti-PD-1 (48 days, p < 0.05) compared to controls or single treatment groups. The reproducible survival benefit of triple combination therapy was abrogated in the setting of CD4+ and CD8+ T cell depletion. Contralateral intracranial tumor re-challenge in long-term surviving mice suggested generation of tumor-specific immune memory responses. The immune profile of the tumor microenvironment (TME) showed increased cytotoxic CD8+ T cells and decreased MDSCs and regulatory T cells in the triple combination therapy mice compared to controls. CONCLUSION The combination of ibrutinib, focal RT, and anti-PD-1 immune checkpoint blockade led to a significant survival benefit compared to controls in a preclinical model of GBM.


2020 ◽  
Vol 220 ◽  
pp. 88-96 ◽  
Author(s):  
Yaqi Li ◽  
Jing Liu ◽  
Long Gao ◽  
Yuan Liu ◽  
Fang Meng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document