scholarly journals Hypoxic Conditions Promote Rhythmic Contractile Oscillations Mediated by Voltage-Gated Sodium Channels Activation in Human Arteries

2021 ◽  
Vol 22 (5) ◽  
pp. 2570
Author(s):  
Anne Virsolvy ◽  
Aurélie Fort ◽  
Lucie Erceau ◽  
Azzouz Charrabi ◽  
Maurice Hayot ◽  
...  

Arterial smooth muscle exhibits rhythmic oscillatory contractions called vasomotion and believed to be a protective mechanism against tissue hypoperfusion or hypoxia. Oscillations of vascular tone depend on voltage and follow oscillations of the membrane potential. Voltage-gated sodium channels (Nav), responsible for the initiation and propagation of action potentials in excitable cells, have also been evidenced both in animal and human vascular smooth muscle cells (SMCs). For example, they contribute to arterial contraction in rats, but their physiopathological relevance has not been established in human vessels. In the present study, we investigated the functional role of Nav in the human artery. Experiments were performed on human uterine arteries obtained after hysterectomy and on SMCs dissociated from these arteries. In SMCs, we recorded a tetrodotoxin (TTX)-sensitive and fast inactivating voltage-dependent INa current. Various Nav genes, encoding -subunit isoforms sensitive (Nav 1.2; 1.3; 1.7) and resistant (Nav 1.5) to TTX, were detected both in arterial tissue and in SMCs. Nav channels immunostaining showed uniform distribution in SMCs and endothelial cells. On arterial tissue, we recorded variations of isometric tension, ex vivo, in response to various agonists and antagonists. In arterial rings placed under hypoxic conditions, the depolarizing agent KCl and veratridine, a specific Nav channels agonist, both induced a sustained contraction overlaid with rhythmic oscillations of tension. After suppression of sympathetic control either by blocking the release of catecholamine or by antagonizing the target adrenergic response, rhythmic activity persisted while the sustained contraction was abolished. This rhythmic activity of the arteries was suppressed by TTX but, in contrast, only attenuated by antagonists of calcium channels, Na+/Ca2+ exchanger, Na+/K+-ATPase and the cardiac Nav channel. These results highlight the role of Nav as a novel key element in the vasomotion of human arteries. Hypoxia promotes activation of Nav channels involved in the initiation of rhythmic oscillatory contractile activity.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Zhirui Liu ◽  
Jie Tao ◽  
Pin Ye ◽  
Yonghua Ji

Voltage-gated sodium channels (VGSCs) are important membrane protein carrying on the molecular basis for action potentials (AP) in neuronal firings. Even though the structure-function studies were the most pursued spots, the posttranslation modification processes, such as glycosylation, phosphorylation, and alternative splicing associating with channel functions captured less eyesights. The accumulative research suggested an interaction between the sialic acids chains and ion-permeable pores, giving rise to subtle but significant impacts on channel gating. Sodium channel-specific neurotoxic toxins, a family of long-chain polypeptides originated from venomous animals, are found to potentially share the binding sites adjacent to glycosylated region on VGSCs. Thus, an interaction between toxin and glycosylated VGSC might hopefully join the campaign to approach the role of glycosylation in modulating VGSCs-involved neuronal network activity. This paper will cover the state-of-the-art advances of researches on glycosylation-mediated VGSCs function and the possible underlying mechanisms of interactions between toxin and glycosylated VGSCs, which may therefore, fulfill the knowledge in identifying the pharmacological targets and therapeutic values of VGSCs.


Ion Channels ◽  
1990 ◽  
pp. 33-64 ◽  
Author(s):  
S. R. Levinson ◽  
W. B. Thornhill ◽  
D. S. Duch ◽  
E. Recio-Pinto ◽  
B. W. Urban

2019 ◽  
Vol 9 ◽  
Author(s):  
Weijia Mao ◽  
Jie Zhang ◽  
Heinrich Körner ◽  
Yong Jiang ◽  
Songcheng Ying

Toxins ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 626 ◽  
Author(s):  
Yashad Dongol ◽  
Fernanda Caldas Cardoso ◽  
Richard J Lewis

Voltage-gated sodium channels (NaVs) are a key determinant of neuronal signalling. Neurotoxins from diverse taxa that selectively activate or inhibit NaV channels have helped unravel the role of NaV channels in diseases, including chronic pain. Spider venoms contain the most diverse array of inhibitor cystine knot (ICK) toxins (knottins). This review provides an overview on how spider knottins modulate NaV channels and describes the structural features and molecular determinants that influence their affinity and subtype selectivity. Genetic and functional evidence support a major involvement of NaV subtypes in various chronic pain conditions. The exquisite inhibitory properties of spider knottins over key NaV subtypes make them the best lead molecules for the development of novel analgesics to treat chronic pain.


2005 ◽  
Vol 1 ◽  
pp. 1744-8069-1-24 ◽  
Author(s):  
Mohammed A Nassar ◽  
Alessandra Levato ◽  
L Caroline Stirling ◽  
John N Wood

Two voltage gated sodium channel α-subunits, Nav1.7 and Nav1.8, are expressed at high levels in nociceptor terminals and have been implicated in the development of inflammatory pain. Mis-expression of voltage-gated sodium channels by damaged sensory neurons has also been implicated in the development of neuropathic pain, but the role of Nav1.7 and Nav1.8 is uncertain. Here we show that deleting Nav1.7 has no effect on the development of neuropathic pain. Double knockouts of both Nav1.7 and Nav1.8 also develop normal levels of neuropathic pain, despite a lack of inflammatory pain symptoms and altered mechanical and thermal acute pain thresholds. These studies demonstrate that, in contrast to the highly significant role for Nav1.7 in determining inflammatory pain thresholds, the development of neuropathic pain does not require the presence of either Nav1.7 or Nav1.8 alone or in combination.


2013 ◽  
Vol 450 (1) ◽  
pp. 126-129
Author(s):  
V. I. Chubinskiy-Nadezhdin ◽  
A. V. Sudarikova ◽  
N. N. Nikolsky ◽  
E. A. Morachevskaya

2018 ◽  
Vol 293 (23) ◽  
pp. 9041-9052 ◽  
Author(s):  
Akello J. Agwa ◽  
Steve Peigneur ◽  
Chun Yuen Chow ◽  
Nicole Lawrence ◽  
David J. Craik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document