scholarly journals Adenovirus-Mediated Inducible Expression of a PD-L1 Blocking Antibody in Combination with Macrophage Depletion Improves Survival in a Mouse Model of Peritoneal Carcinomatosis

2021 ◽  
Vol 22 (8) ◽  
pp. 4176
Author(s):  
Maria Buñuales ◽  
Maria Cristina Ballesteros-Briones ◽  
Manuela Gonzalez-Aparicio ◽  
Sandra Hervas-Stubbs ◽  
Eva Martisova ◽  
...  

Immune checkpoint inhibitors (ICIs) have demonstrated remarkable efficacy in a growing number of malignancies. However, overcoming primary or secondary resistances is difficult due to pharmacokinetics issues and side effects associated with high systemic exposure. Local or regional expression of monoclonal antibodies (mAbs) using gene therapy vectors can alleviate this problem. In this work, we describe a high-capacity adenoviral vector (HCA-EFZP-aPDL1) equipped with a mifepristone-inducible system for the controlled expression of an anti-programmed death ligand 1 (PD-L1) blocking antibody. The vector was tested in an immune-competent mouse model of colorectal cancer based on implantation of MC38 cells. A single local administration of HCA-EFZP-aPDL1 in subcutaneous lesions led to a significant reduction in tumor growth with minimal release of the antibody in the circulation. When the vector was tested in a more stringent setting (rapidly progressing peritoneal carcinomatosis), the antitumor effect was marginal even in combination with other immune-stimulatory agents such as polyinosinic-polycytidylic acid (pI:C), blocking mAbs for T cell immunoglobulin, mucin-domain containing-3 (TIM-3) or agonistic mAbs for 4-1BB (CD137). In contrast, macrophage depletion by clodronate liposomes enhanced the efficacy of HCA-EFZP-aPDL1. These results highlight the importance of addressing macrophage-associated immunoregulatory mechanisms to overcome resistance to ICIs in the context of colorectal cancer.

2021 ◽  
Vol 14 ◽  
pp. 175628482110244
Author(s):  
Vanessa Wookey ◽  
Axel Grothey

Colorectal cancer (CRC) is the third most common cancer type in both men and women in the USA. Most patients with CRC are diagnosed as local or regional disease. However, the survival rate for those diagnosed with metastatic disease remains disappointing, despite multiple treatment options. Cancer therapies for patients with unresectable or metastatic CRC are increasingly being driven by particular biomarkers. The development of various immune checkpoint inhibitors has revolutionized cancer therapy over the last decade by harnessing the immune system in the treatment of cancer, and the role of immunotherapy continues to expand and evolve. Pembrolizumab is an anti-programmed cell death protein 1 immune checkpoint inhibitor and has become an essential part of the standard of care in the treatment regimens for multiple cancer types. This paper reviews the increasing evidence supporting and defining the role of pembrolizumab in the treatment of patients with unresectable or metastatic CRC.


2021 ◽  
Vol 22 (8) ◽  
Author(s):  
Federica Pecci ◽  
Luca Cantini ◽  
Alessandro Bittoni ◽  
Edoardo Lenci ◽  
Alessio Lupi ◽  
...  

Opinion statementAdvanced colorectal cancer (CRC) is a heterogeneous disease, characterized by several subtypes with distinctive genetic and epigenetic patterns. During the last years, immune checkpoint inhibitors (ICIs) have revamped the standard of care of several tumors such as non-small cell lung cancer and melanoma, highlighting the role of immune cells in tumor microenvironment (TME) and their impact on cancer progression and treatment efficacy. An “immunoscore,” based on the percentage of two lymphocyte populations both at tumor core and invasive margin, has been shown to improve prediction of treatment outcome when added to UICC-TNM classification. To date, pembrolizumab, an anti-programmed death protein 1 (PD1) inhibitor, has gained approval as first-line therapy for mismatch-repair-deficient (dMMR) and microsatellite instability-high (MSI-H) advanced CRC. On the other hand, no reports of efficacy have been presented in mismatch-repair-proficient (pMMR) and microsatellite instability-low (MSI-L) or microsatellite stable (MSS) CRC. This group includes roughly 95% of all advanced CRC, and standard chemotherapy, in addition to anti-EGFR or anti-angiogenesis drugs, still represents first treatment choice. Hopefully, deeper understanding of CRC immune landscape and of the impact of specific genetic and epigenetic alterations on tumor immunogenicity might lead to the development of new drug combination strategies to overcome ICIs resistance in pMMR CRC, thus paving the way for immunotherapy even in this subgroup.


2021 ◽  
Vol 22 (14) ◽  
pp. 7717
Author(s):  
Guido Giordano ◽  
Pietro Parcesepe ◽  
Giuseppina Bruno ◽  
Annamaria Piscazzi ◽  
Vincenzo Lizzi ◽  
...  

Target-oriented agents improve metastatic colorectal cancer (mCRC) survival in combination with chemotherapy. However, the majority of patients experience disease progression after first-line treatment and are eligible for second-line approaches. In such a context, antiangiogenic and anti-Epidermal Growth Factor Receptor (EGFR) agents as well as immune checkpoint inhibitors have been approved as second-line options, and RAS and BRAF mutations and microsatellite status represent the molecular drivers that guide therapeutic choices. Patients harboring K- and N-RAS mutations are not eligible for anti-EGFR treatments, and bevacizumab is the only antiangiogenic agent that improves survival in combination with chemotherapy in first-line, regardless of RAS mutational status. Thus, the choice of an appropriate therapy after the progression to a bevacizumab or an EGFR-based first-line treatment should be evaluated according to the patient and disease characteristics and treatment aims. The continuation of bevacizumab beyond progression or its substitution with another anti-angiogenic agents has been shown to increase survival, whereas anti-EGFR monoclonals represent an option in RAS wild-type patients. In addition, specific molecular subgroups, such as BRAF-mutated and Microsatellite Instability-High (MSI-H) mCRCs represent aggressive malignancies that are poorly responsive to standard therapies and deserve targeted approaches. This review provides a critical overview about the state of the art in mCRC second-line treatment and discusses sequential strategies according to key molecular biomarkers.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 137
Author(s):  
Gianluca Mauri ◽  
Erica Bonazzina ◽  
Alessio Amatu ◽  
Federica Tosi ◽  
Katia Bencardino ◽  
...  

The BRAFV600E mutation is found in 8–10% of metastatic colorectal cancer (mCRC) patients and it is recognized as a poor prognostic factor with a median overall survival inferior to 20 months. At present, besides immune checkpoint inhibitors (CPIs) for those tumors with concomitant MSI-H status, recommended treatment options include cytotoxic chemotherapy + anti-VEGF in the first line setting, and a combination of EGFR and a BRAF inhibitor (cetuximab plus encorafenib) in second line. However, even with the latter targeted approach, acquired resistance limits the possibility of more than an incremental benefit and survival is still dismal. In this review, we discuss current treatment options for this subset of patients and perform a systematic review of ongoing clinical trials. Overall, we identified six emerging strategies: targeting MAPK pathway (monotherapy or combinations), targeting MAPK pathway combined with cytotoxic agents, intensive cytotoxic regimen combinations, targeted agents combined with CPIs, oxidative stress induction, and cytotoxic agents combined with antiangiogenic drugs and CPIs. In the future, the integration of new therapeutic strategies targeting key players in the BRAFV600E oncogenic pathways with current treatment approach based on cytotoxic chemotherapy and surgery is likely to redefine the treatment landscape of these CRC patients.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A828-A828
Author(s):  
Kevinn Eddy ◽  
Christina Marinaro ◽  
Maryam Rasheed ◽  
Joseph Campagnolo ◽  
Xiaoxuan Zhong ◽  
...  

BackgroundMuch progress has been made in understanding melanoma pathogenesis within the last few years through targeted therapies and immunotherapies. However, resistance to small molecule inhibitors remains an obstacle. Immunotherapies such as checkpoint inhibitors against PD-1/PD-L1 lead to durable responses but only in a subset of melanoma patients. Mouse models reflecting human cancers provide invaluable tools towards the translation of basic science discoveries to clinical therapies, but many of these in vivo studies are short-term and do not accurately mimic patient circumstances. Our lab has a melanoma-prone transgenic mouse model which is driven by ectopic expression of a normal neuronal receptor, metabotropic glutamate receptor 1 (GRM1). This mouse model recapitulates melanoma development and progression frequently associated with melanoma patients, where aberrant GRM1 expression is detected. We have shown that in >90% of late-stage melanoma patients, there is atypical GRM1 mediated signaling and expression.MethodsIn this study, we are using these mice, TGS, to determine the long-term, 18-week, therapeutic consequences of troriluzole, a prodrug for riluzole, which is an inhibitor of glutamatergic signaling plus anti-PD-1, an immune-checkpoint inhibitor. Tumor burden is monitored every 6 weeks for 18 weeks using a small imaging system, IVIS and tumor burden is quantified using ImageJ software. Blood, lymphoid, and tumor samples were collected at several time points during the study for molecular, and immune analyses.ResultsPreliminary results suggest a gender-biased treatment response and that the combination of troriluzole and anti-PD-1 is more efficacious than either agent alone. In males, a 43.9% reduction in tumor burden was observed while in females there was a 29.6% increase in tumor burden in the combination group compared to vehicle. In concordance, after the removal of the treatment modality, the male mice in the combinatorial group survived 42 days longer compared to vehicle controls with sustained tumor reduction by 68.3%. In female mice no significant advantage in survival or reduction in tumor burden was noted.ConclusionsN/A


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karianne Giller Fleten ◽  
J. Johannes Eksteen ◽  
Brynjar Mauseth ◽  
Ketil André Camilio ◽  
Terje Vasskog ◽  
...  

AbstractOncolytic peptides represent a novel, promising cancer treatment strategy with activity in a broad spectrum of cancer entities, including colorectal cancer (CRC). Cancer cells are killed by immunogenic cell death, causing long-lasting anticancer immune responses, a feature of particular interest in non-immunogenic CRC. Oncolytic peptides DTT-205 and DTT-304 were administered by intratumoral injection in subcutaneous tumors established from murine CRC cell lines CT26 and MC38, and complete regression was obtained in the majority of animals. When cured animals were rechallenged by splenic injection of tumor cells, 1/23 animals developed liver metastases, compared to 19/22 naïve animals. Treatment with both peptides was well tolerated, but monitoring post-injection hemodynamic parameters in rats, less extensive changes were observed with DTT-205 than DTT-304, favoring DTT-205 for future drug development. DTT-205 was subsequently shown to have strong in vitro activity in a panel of 33 cancer cell lines. In conclusion, both peptides exerted a strong inhibitory effect in two immunocompetent CRC models and induced a systemic effect preventing development of liver metastases upon splenic rechallenge. If a similar effect could be obtained in humans, these drugs would be of particular interest for combinatory treatment with immune checkpoint inhibitors in metastatic CRC.


2021 ◽  
Author(s):  
Lewis Au ◽  
◽  
Annika Fendler ◽  
Scott T. C. Shepherd ◽  
Karolina Rzeniewicz ◽  
...  

AbstractPatients with cancer are currently prioritized in coronavirus disease 2019 (COVID-19) vaccination programs globally, which includes administration of mRNA vaccines. Cytokine release syndrome (CRS) has not been reported with mRNA vaccines and is an extremely rare immune-related adverse event of immune checkpoint inhibitors. We present a case of CRS that occurred 5 d after vaccination with BTN162b2 (tozinameran)—the Pfizer-BioNTech mRNA COVID-19 vaccine—in a patient with colorectal cancer on long-standing anti-PD-1 monotherapy. The CRS was evidenced by raised inflammatory markers, thrombocytopenia, elevated cytokine levels (IFN-γ/IL-2R/IL-18/IL-16/IL-10) and steroid responsiveness. The close temporal association of vaccination and diagnosis of CRS in this case suggests that CRS was a vaccine-related adverse event; with anti-PD1 blockade as a potential contributor. Overall, further prospective pharmacovigillence data are needed in patients with cancer, but the benefit–risk profile remains strongly in favor of COVID-19 vaccination in this population.


Sign in / Sign up

Export Citation Format

Share Document