scholarly journals Effect and Biocompatibility of a Cross-Linked Hyaluronic Acid and Polylactide-co-glycolide Microcapsule Vehicle in Intratympanic Drug Delivery for Treating Acute Acoustic Trauma

2021 ◽  
Vol 22 (11) ◽  
pp. 5720
Author(s):  
Jung-Ah Cho ◽  
Bong-Jik Kim ◽  
Yu-Jung Hwang ◽  
Shin-Wook Woo ◽  
Tae-Soo Noh ◽  
...  

The treatment of acute hearing loss is clinically challenging due to the low efficacy of drug delivery into the inner ear. Local intratympanic administration of dexamethasone (D) and insulin-like growth factor 1 (IGF1) has been proposed for treatment, but they do not persist in the middle ear because they are typically delivered in fluid form. We developed a dual-vehicle drug delivery system consisting of cross-linked hyaluronic acid and polylactide-co-glycolide microcapsules. The effect and biocompatibility of the dual vehicle in delivering D and IGF1 were evaluated using an animal model of acute acoustic trauma. The dual vehicle persisted 10.9 times longer (8.7 days) in the middle ear compared with the control (standard-of-care vehicle, 0.8 days). The dual vehicle was able to sustain drug release over up to 1 to 2 months when indocyanine green was loaded as the drug. One-third of the animals experienced an inflammatory adverse reaction. However, it was transient with no sequelae, which was validated by micro CT findings, endoscopic examination, and histological assessment. Hearing restoration after acoustic trauma was satisfactory in both groups, which was further supported by comparable numbers of viable hair cells. Overall, the use of a dual vehicle for intratympanic D and IGF1 delivery may maximize the effect of drug delivery to the target organ because the residence time of the vehicle is prolonged.

2020 ◽  
Vol 25 (6) ◽  
pp. 291-296
Author(s):  
Mina Park ◽  
Yu-Jung Hwang ◽  
Tae-Soo Noh ◽  
Shin-Wook Woo ◽  
Ji-Hoon Park ◽  
...  

<b><i>Introduction:</i></b> The aim of this study was to assess the biocompatibility of several intra-tympanic (IT) drug delivery vehicles and to compare hearing outcomes. <b><i>Materials and Methods:</i></b> After acute acoustic trauma, rats were treated with IT 10 mg/mL dexamethasone phosphate (D) and divided into the following groups for drug delivery: saline + D (<i>n</i> = 15), hyaluronic acid (HA) + D (<i>n</i> = 17), and methoxy polyethylene glycol-<i>b</i>-polycaprolactone block copolymer (MP) + D (<i>n</i> = 24). <b><i>Results:</i></b> No inflammation was found in the saline + D or HA + D groups. The duration of vehicle/drug persistence in the bulla was significantly longer for the MP + D (47.5 days) and HA + D groups (1.8 days) than for the saline + D group (&#x3c;1 day). The tympanic membrane was significantly thicker in the MP + D group than in the saline + D and HA + D groups. The proportion of ears with good hearing outcome was significantly higher (63.6%) in the HA + D group than in the MP + D group. The number of hair cells in the hearing loss (HL) control group was significantly lower than in the MP + D group. <b><i>Discussion/Conclusion:</i></b> HA shows great potential as a biocompatible vehicle for D delivery via the IT route, without an inflammatory reaction and with better hearing outcomes. Considering inflammation and hearing, MP may not be a good candidate for IT drug delivery.


2019 ◽  
Vol 9 (1) ◽  
pp. 2-14
Author(s):  
Sahil Kumar ◽  
Bandna Sharma ◽  
Kiran Thakur ◽  
Tilak R. Bhardwaj ◽  
Deo N. Prasad ◽  
...  

Background: Many efforts have been explored in the last decade to treat colon cancer but nanoparticulate drug delivery systems are making a vital contribution in the improvement of drug delivery to colon cancer cells. Objective: In this review, we attempt to highlight recent advancements in the development of novel drug delivery systems of nanoparticles for the targeted drug delivery to colon. Polymers like Epithelial Cell Adhesion Molecule (EpCAM) aptamer chitosan, Hyaluronic Acid (HA), Chitosan (CS)– Carboxymethyl Starch (CMS), silsesquioxane capped mesoporous silica, Near IR (NIR) fluorescent Human Serum Albumin (HAS), poly(ethylene glycol)-conjugated hyaluronic acid etc. have been discussed by employing various anticancer drugs like doxorubicin, oxaliplatin, paclitaxel, 5-fluorouracil etc. Conclusion: These novel drug delivery systems have been determined to be more efficacious in terms of stability, sustained and targeted drug delivery, therapeutic efficacy, improved bioavailability and enhanced anticancer activity.


2021 ◽  
Vol 26 (5) ◽  
pp. 509-521
Author(s):  
Tamara Athamneh ◽  
Adil Amin ◽  
Edit Benke ◽  
Rita Ambrus ◽  
Pavel Gurikov ◽  
...  

Author(s):  
Sebastian Halm ◽  
David Haberthür ◽  
Elisabeth Eppler ◽  
Valentin Djonov ◽  
Andreas Arnold

Abstract Introduction This pilot study explores whether a human Thiel-embalmed temporal bone is suitable for generating an accurate and complete data set with micro-computed tomography (micro-CT) and whether solid iodine-staining improves visualization and facilitates segmentation of middle ear structures. Methods A temporal bone was used to verify the accuracy of the imaging by first digitally measuring the stapes on the tomography images and then physically under the microscope after removal from the temporal bone. All measurements were compared with literature values. The contralateral temporal bone was used to evaluate segmentation and three-dimensional (3D) modeling after iodine staining and micro-CT scanning. Results The digital and physical stapes measurements differed by 0.01–0.17 mm or 1–19%, respectively, but correlated well with the literature values. Soft tissue structures were visible in the unstained scan. However, iodine staining increased the contrast-to-noise ratio by a factor of 3.7 on average. The 3D model depicts all ossicles and soft tissue structures in detail, including the chorda tympani, which was not visible in the unstained scan. Conclusions Micro-CT imaging of a Thiel-embalmed temporal bone accurately represented the entire anatomy. Iodine staining considerably increased the contrast of soft tissues, simplified segmentation and enabled detailed 3D modeling of the middle ear.


2019 ◽  
Vol 150 ◽  
pp. 49-55 ◽  
Author(s):  
Tamara Athamneh ◽  
Adil Amin ◽  
Edit Benke ◽  
Rita Ambrus ◽  
Claudia S. Leopold ◽  
...  

2014 ◽  
Vol 14 (11) ◽  
pp. 1556-1568 ◽  
Author(s):  
Sílvia Santos Pedrosa ◽  
Catarina Gonçalves ◽  
Laurent David ◽  
Miguel Gama

Sign in / Sign up

Export Citation Format

Share Document