scholarly journals Elastic and Ultradeformable Liposomes for Transdermal Delivery of Active Pharmaceutical Ingredients (APIs)

2021 ◽  
Vol 22 (18) ◽  
pp. 9743
Author(s):  
Eliana B. Souto ◽  
Ana S. Macedo ◽  
João Dias-Ferreira ◽  
Amanda Cano ◽  
Aleksandra Zielińska ◽  
...  

Administration of active pharmaceutical ingredients (APIs) through the skin, by means of topical drug delivery systems, is an advanced therapeutic approach. As the skin is the largest organ of the human body, primarily acting as a natural protective barrier against permeation of xenobiotics, specific strategies to overcome this barrier are needed. Liposomes are nanometric-sized delivery systems composed of phospholipids, which are key components of cell membranes, making liposomes well tolerated and devoid of toxicity. As their lipid compositions are similar to those of the skin, liposomes are used as topical, dermal, and transdermal delivery systems. However, permeation of the first generation of liposomes through the skin posed some limitations; thus, a second generation of liposomes has emerged, overcoming permeability problems. Various mechanisms of permeation/penetration of elastic/ultra-deformable liposomes into the skin have been proposed; however, debate continues on their extent/mechanisms of permeation/penetration. In vivo bioavailability of an API administered in the form of ultra-deformable liposomes is similar to the bioavailability achieved when the same API is administered in the form of a solution by subcutaneous or epi-cutaneous injection, which demonstrates their applicability in transdermal drug delivery.

Author(s):  
Delly Ramadon ◽  
Maeliosa T. C. McCrudden ◽  
Aaron J. Courtenay ◽  
Ryan F. Donnelly

AbstractTransdermal drug delivery systems have become an intriguing research topic in pharmaceutical technology area and one of the most frequently developed pharmaceutical products in global market. The use of these systems can overcome associated drawbacks of other delivery routes, such as oral and parenteral. The authors will review current trends, and future applications of transdermal technologies, with specific focus on providing a comprehensive understanding of transdermal drug delivery systems and enhancement strategies. This article will initially discuss each transdermal enhancement method used in the development of first-generation transdermal products. These methods include drug/vehicle interactions, vesicles and particles, stratum corneum modification, energy-driven methods and stratum corneum bypassing techniques. Through suitable design and implementation of active stratum corneum bypassing methods, notably microneedle technology, transdermal delivery systems have been shown to deliver both low and high molecular weight drugs. Microneedle technology platforms have proven themselves to be more versatile than other transdermal systems with opportunities for intradermal delivery of drugs/biotherapeutics and therapeutic drug monitoring. These have shown that microneedles have been a prospective strategy for improving transdermal delivery systems. Graphical abstract


2020 ◽  
Vol 21 (14) ◽  
pp. 5016
Author(s):  
Roxana Popescu ◽  
Mihaela Violeta Ghica ◽  
Cristina-Elena Dinu-Pîrvu ◽  
Valentina Anuța ◽  
Dumitru Lupuliasa ◽  
...  

In an attempt to develop drug delivery systems that bypass the blood–brain barrier (BBB) and prevent liver and intestinal degradation, it was concluded that nasal medication meets these criteria and can be used for drugs that have these drawbacks. The aim of this review is to present the influence of the properties of chitosan and its derivatives (mucoadhesion, permeability enhancement, surface tension, and zeta potential) on the development of suitable nasal drug delivery systems and on the nasal bioavailability of various active pharmaceutical ingredients. Interactions between chitosan and proteins, lipids, antigens, and other molecules lead to complexes that have their own applications or to changing characteristics of the substances involved in the bond (conformational changes, increased stability or solubility, etc.). Chitosan and its derivatives have their own actions (antibacterial, antifungal, immunostimulant, antioxidant, etc.) and can be used as such or in combination with other molecules from the same class to achieve a synergistic effect. The applicability of the properties is set out in the second part of the paper, where nasal formulations based on chitosan are described (vaccines, hydrogels, nanoparticles, nanostructured lipid carriers (NLC), powders, emulsions, etc.).


Author(s):  
P. Kranthi Kumar ◽  
R. Santosh Kumar

Transdermal drug delivery systems (TDDS), which are self-administrable and non-invasive, can improve bioavailability and patient compliance by bypassing first-pass metabolism. Vesicular-based TDDS have attracted a lot of attention in recent years because they're designed for controlled, efficient, and targeted drug delivery. One of these delivery technologies, transferosomal-based formulations, has grown in popularity due to its ability to achieve all of the desired criteria and quality qualities. Transferosomes combine the characteristics of liposomes and niosomes because they contain both liposomes (phospholipids and cholesterols) and niosomes as components (nonionic surfactants; edge activators). as a result, they are referred to as the first generation of elastic liposomes. However transdermal drug delivery is difficult due to the presence of the skin's protective barrier, transferosomal drug delivery overcomes all obstacles due to its unique characteristics, such as its ultradeformable vesicular nature. The benefits, limitations, modes of penetration, formulations, production and assessment methodologies, and pharmaceutical uses of transferosomal drug delivery systems are discussed in this paper. Conclusion: Transferosomes have several importance over other vesicular systems, including greater deformability, greater penetration power across skin, the ability to deliver systemic drugs, and higher stability.


Author(s):  
Priyanka Kriplani ◽  
Kumar Guarve

Background: Transdermal drug delivery is an emerging and tempting system over oral and hypodermic drug delivery system. With the new developments in skin penetration techniques, anticancer drugs ranging from hydrophilic macromolecules to lipophilic drugs can be administered via transdermal route to treat cancer. Objective: In the present review, various approaches to enhance the transdermal delivery of drugs is discussed including the micro and nanotechnology based transdermal formulations like chemotherapy, gene therapy, immunotherapy, phototherapy, vaccines and medical devices. Limitations and advantages of various transdermal technologies is also elaborated. Method: In this review, patent applications and recent literature of transdermal drug delivery systems employed to cure mainly cancer are covered. Results: Transdermal drug delivery systems have proved their potential to cure cancer. They increase the bioavailability of drug by site specific drug delivery and can reduce the side effects/toxicity associated with anticancer drugs. Conclusion: The potential of transdermal drug delivery systems to carry the drug may unclutter novel ways for therapeutic intercessions in various tumors.


2020 ◽  
Vol 186 ◽  
pp. 113295 ◽  
Author(s):  
Maria Chiara Cristiano ◽  
Francesca Froiio ◽  
Antonia Mancuso ◽  
Michelangelo Iannone ◽  
Massimo Fresta ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Daniel A. Davis ◽  
Patricia P. Martins ◽  
Michael S. Zamloot ◽  
Shawn A. Kucera ◽  
Robert O. Williams ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document