scholarly journals Memantine Modulates Oxidative Stress in the Rat Brain following Experimental Autoimmune Encephalomyelitis

2021 ◽  
Vol 22 (21) ◽  
pp. 11330
Author(s):  
Beata Dąbrowska-Bouta ◽  
Lidia Strużyńska ◽  
Marta Sidoryk-Węgrzynowicz ◽  
Grzegorz Sulkowski

Experimental autoimmune encephalomyelitis (EAE) is an animal model most commonly used in research on the pathomechanisms of multiple sclerosis (MS). The inflammatory processes, glutamate excitotoxicity, and oxidative stress have been proposed as determinants accompanying demyelination and neuronal degeneration during the course of MS/EAE. The aim of the current study was to characterize the role of NMDA receptors in the induction of oxidative stress during the course of EAE. The effect of memantine, the uncompetitive NMDA receptor antagonist, on modulation of neurological deficits and oxidative stress in EAE rats was analyzed using several experimental approaches. We demonstrated that the expression of antioxidative enzymes (superoxide dismutases SOD1 and SOD2) were elevated in EAE rat brains. Under the same experimental conditions, we observed alterations in oxidative stress markers such as increased levels of malondialdehyde (MDA) and decreased levels of sulfhydryl (-SH) groups, both protein and non-protein (indicating protein damage), and a decline in reduced glutathione. Importantly, pharmacological inhibition of ionotropic NMDA glutamate receptors by their antagonist memantine improved the physical activity of EAE rats, alleviated neurological deficits such as paralysis of tail and hind limbs, and modulated oxidative stress parameters (MDA, -SH groups, SOD’s). Furthermore, the current therapy aiming to suppress NMDAR-induced oxidative stress was partially effective when NMDAR’s antagonist was administered at an early (asymptomatic) stage of EAE.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Grzegorz Sulkowski ◽  
Beata Dąbrowska-Bouta ◽  
Lidia Strużyńska

The aim of our investigation was to characterize the role of group I mGluRs and NMDA receptors in pathomechanisms of experimental autoimmune encephalomyelitis (EAE), the rodent model of MS. We tested the effects of LY 367385 (S-2-methyl-4-carboxyphenylglycine, a competitive antagonist of mGluR1), MPEP (2-methyl-6-(phenylethynyl)-pyridine, an antagonist of mGluR5), and the uncompetitive NMDA receptor antagonists amantadine and memantine on modulation of neurological deficits observed in rats with EAE. The neurological symptoms of EAE started at 10-11 days post-injection (d.p.i.) and peaked after 12-13 d.p.i. The protein levels of mGluRs and NMDA did not increase in early phases of EAE (4 d.p.i.), but starting from 8 d.p.i. to 25 d.p.i., we observed a significant elevation of mGluR1 and mGluR5 protein expression by about 20% and NMDA protein expression by about 10% over the control at 25 d.p.i. The changes in protein levels were accompanied by changes in mRNA expression of group I mGluRs and NMDARs. During the late disease phase (20–25 d.p.i.), the mRNA expression levels reached 300% of control values. In contrast, treatment with individual receptor antagonists resulted in a reduction of mRNA levels relative to untreated animals.


2014 ◽  
Vol 128 (2) ◽  
pp. 95-109 ◽  
Author(s):  
Verónica Valero-Esquitino ◽  
Kristin Lucht ◽  
Pawel Namsolleck ◽  
Florianne Monnet-Tschudi ◽  
Tobias Stubbe ◽  
...  

In experimental autoimmune encephalomyelitis in mice (a model for multiple sclerosis), direct angiotensin AT2R stimulation attenuated T-cell infiltration, microglia activation, spinal cord demyelination and neurological deficits suggesting the AT2R as potential drug target for treatment of demyelinating diseases.


Sign in / Sign up

Export Citation Format

Share Document