scholarly journals A Novel Isogenic Human Cell-Based System for MEN1 Syndrome Generated by CRISPR/Cas9 Genome Editing

2021 ◽  
Vol 22 (21) ◽  
pp. 12054
Author(s):  
Natalia Klementieva ◽  
Daria Goliusova ◽  
Julia Krupinova ◽  
Vladislav Yanvarev ◽  
Alexandra Panova ◽  
...  

Multiple endocrine neoplasia type 1 (MEN1) is a rare tumor syndrome that manifests differently among various patients. Despite the mutations in the MEN1 gene that commonly predispose tumor development, there are no obvious phenotype–genotype correlations. The existing animal and in vitro models do not allow for studies of the molecular genetics of the disease in a human-specific context. We aimed to create a new human cell-based model, which would consider the variability in genetic or environmental factors that cause the complexity of MEN1 syndrome. Here, we generated patient-specific induced pluripotent stem cell lines carrying the mutation c.1252G>T, D418Y in the MEN1 gene. To reduce the genetically determined variability of the existing cellular models, we created an isogenic cell system by modifying the target allele through CRISPR/Cas9 editing with great specificity and efficiency. The high potential of these cell lines to differentiate into the endodermal lineage in defined conditions ensures the next steps in the development of more specialized cells that are commonly affected in MEN1 patients, such as parathyroid or pancreatic islet cells. We anticipate that this isogenic system will be broadly useful to comprehensively study MEN1 gene function across different contexts, including in vitro modeling of MEN1 syndrome.

Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 368
Author(s):  
Joline Roze ◽  
Elena Sendino Garví ◽  
Ellen Stelloo ◽  
Christina Stangl ◽  
Ferdinando Sereno ◽  
...  

Adult granulosa cell tumors (AGCTs) arise from the estrogen-producing granulosa cells. Treatment of recurrence remains a clinical challenge, as systemic anti-hormonal treatment or chemotherapy is only effective in selected patients. We established a method to rapidly screen for drug responses in vitro using direct patient-derived cell lines in order to optimize treatment selection. The response to 11 monotherapies and 12 combination therapies, including chemotherapeutic, anti-hormonal, and targeted agents, were tested in 12 AGCT-patient-derived cell lines and an AGCT cell line (KGN). Drug screens were performed within 3 weeks after tissue collection by measurement of cell viability 72 h after drug application. The potential synergy of drug combinations was assessed. The human maximum drug plasma concentration (Cmax) and steady state (Css) thresholds obtained from available phase I/II clinical trials were used to predict potential toxicity in patients. Patient-derived AGCT cell lines demonstrated resistance to all monotherapies. All cell lines showed synergistic growth inhibition by combination treatment with carboplatin, paclitaxel, and alpelisib at a concentration needed to obtain 50% cell death (IC50) that are below the maximum achievable concentration in patients (IC50 < Cmax). We show that AGCT cell lines can be rapidly established and used for patient-specific in vitro drug testing, which may guide treatment decisions. Combination treatment with carboplatin, paclitaxel, and alpelisib was consistently effective in AGCT cell lines and should be further studied as a potential effective combination for AGCT treatment in patients.


2021 ◽  
Vol 570 ◽  
pp. 206-213
Author(s):  
Ryohei Saito ◽  
Hiromasa Satoh ◽  
Kayo Aoba ◽  
Hajime Hirasawa ◽  
Naofumi Miwa

2016 ◽  
Vol 36 (suppl_1) ◽  
Author(s):  
Cynthia St. Hilaire ◽  
Hui Jin ◽  
Yuting Huang ◽  
Dan Yang ◽  
Alejandra Negro ◽  
...  

Objective: The objective of this study was to develop a patient-specific induced pluripotent stem cell (iPSC)-based disease model to understand the process by which CD73-deficiency leads to vascular calcification in the disease, Arterial Calcification due to Deficiency of CD73 (ACDC). Approach & Results: ACDC is an autosomal recessive disease resulting from mutations in the gene encoding for CD73, which converts extracellular AMP to adenosine. CD73-deficiency manifests with tortuosity and vascular calcification of the medial layer of lower-extremity arteries, a pathology associated with diabetes and chronic kidney disease. We previously identified that dermal fibroblasts isolated from ACDC patients calcify in vitro, however in vivo studies of the vasculature are limited, as murine models of CD73 deficiency do not recapitulate the human disease phenotype. Thus, we created iPSCs from ACDC patients and control fibroblasts. ACDC and Control iPSCs form teratomas when injected in immune-compromised mice, however ACDC iPSC teratomas exhibit extensive calcifications. Control and ACDC iPSCs were differentiated down the mesenchymal lineage (MSC) and while there was no difference in chondrogenesis and adipogenesis, ACDC iMSCs underwent osteogenesis sooner than control iPSC, have higher activity of tissue-nonspecific alkaline phosphatase (TNAP), and lower levels of extracellular adenosine. During osteogenic simulation, TNAP activity in ACDC cells significantly increased adenosine levels, however, not to levels needed for functional compensatory stimulation of the adenosine receptors. Inhibition of TNAP with levimisole ablates this increase in adenosine. Treatment with an A2b adenosine receptor (AR) agonist drastically reduced TNAP activity in vitro, and calcification in ACDC teratomas, as did treatment with etidronate, which is currently being tested in a clinical trial on ACDC patients. Conclusions: These results illustrate a pro-osteogenic phenotype in CD73-deficient cells whereby TNAP activity attempts to compensate for CD73 deficiency, but subsequently induces calcification that can be reversed by activation of the A2bAR. The iPSC teratoma model may be used to screen other potential therapeutics for calcification disorders.


2005 ◽  
Vol 49 (4) ◽  
pp. 1597-1599 ◽  
Author(s):  
Benjamin Mimee ◽  
Caroline Labbé ◽  
René Pelletier ◽  
Richard R. Bélanger

ABSTRACT Flocculosin, a glycolipid isolated from the yeast-like fungus Pseudozyma flocculosa, was investigated for in vitro antifungal activity. The compound displayed antifungal properties against several pathogenic yeasts. Synergistic activity was observed between flocculosin and amphotericin B, and no significant cytotoxicity was demonstrated when tested against human cell lines.


1993 ◽  
Vol 13 (10) ◽  
pp. 6036-6043
Author(s):  
T Ogata ◽  
D Ayusawa ◽  
M Namba ◽  
E Takahashi ◽  
M Oshimura ◽  
...  

Using nontumorigenic immortalized human cell lines KMST-6 (KMST) and SUSM-1 (SUSM), we attempted to identify the chromosome that carries a putative senescence-related gene(s). These cell lines are the only ones that have been established independently from normal human diploid fibroblasts following in vitro mutagenesis. We first examined restriction fragment length polymorphisms on each chromosome of these immortalized cell lines and their parental cell lines and found specific chromosomal alterations common to these cell lines (a loss of heterozygosity in KMST and a deletion in SUSM) on the long arm of chromosome 7. In addition to these, we also found that introduction of chromosome 7 into these cell lines by means of microcell fusion resulted in the cessation of cell division, giving rise to cells resembling cells in senescence. Introduction of other chromosomes, such as chromosomes 1 and 11, on which losses of heterozygosity were also detected in one of the cell lines (KMST), to either KMST or SUSM cells or of chromosome 7 to several tumor-derived cell lines had no effect on their division potential. These results strongly suggest that a gene(s) affecting limited-division potential or senescence of normal human fibroblasts is located on chromosome 7, probably at the long arm of the chromosome, representing the first case in which a specific chromosome reverses the immortal phenotype of otherwise normal human cell lines.


Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Michelle R Santoso ◽  
Yuko Tada ◽  
Gentaro Ikeda ◽  
Ji-Hye Jung ◽  
Evgeniya Vaskova ◽  
...  

Background: Induced pluripotent stem cells (iPSCs) and their differentiated cardiomyocytes (iCMs) have tremendous potential as patient-specific therapy for myocardial injury (MI). Our previous work showed that the iCMs restore the injured murine myocardium through secretion of paracrine factors, modulating apoptotic pathways to restore the murine peri-infarct region (PIR). Hypothesis: iCM-derived exosomes (iCM-Ex), a major constituent of the iCM secretome, may salvage the injured cardiomyocytes in the PIR. Methods: iCM-Ex were precipitated from iCM supernatant and characterized using various molecular analyses. Immunodeficient mice sustained MIs and received iCMs, iCM-Ex, or PBS control via direct intramyocardial injection into the PIR. Cardiac MRI assessed LV ejection fraction (LVEF) and viability at 2- and 4-week post-injection. iCMs, iCM-Ex, and PIR tissue were isolated for molecular and histological analyses. Results: iCM-Ex measured approximately 142 nm and expressed CD63 and CD9. iCM and iCM-Ex miRNA profiles had significant overlap, indicating that exosomal content was reflective of the parent cell. In vitro iCM apoptosis was increased significantly by hypoxia and exosome biogenesis inhibition while iCM-Ex or rapamycin reduced iCM apoptosis (p<0.05, vs. control). Mice treated with iCMs or iCM-Ex had significantly improved LVEF and LV viability compared to the control (p<0.05). Apoptosis and fibrosis were significantly reduced in iCM- and iCM-Ex treated mice. Autophagy and associated mTOR signaling pathway were significantly enhanced in iCM-Ex treatment group. Conclusions: iCM-Ex demonstrated similar efficacy as the iCMs in improving post-MI cardiac function by regulating autophagy and apoptosis of hypoxia injured cardiomyocytes. This finding represents the potential of cell-free, patient-specific biologic to treat ischemic cardiomyopathy by stimulation of an endogenous repair mechanism.


2019 ◽  
Vol 17 (4) ◽  
pp. 497-506 ◽  
Author(s):  
Marta Henklewska ◽  
Aleksandra Pawlak ◽  
Justyna Kutkowska ◽  
Hanna Pruchnik ◽  
Andrzej Rapak ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document