Abstract 17203: Exosomes From Induced Pluripotent Stem Cell-Derived Cardiomyocytes Salvage the Injured Myocardium by Modulation of Autophagy

Circulation ◽  
2018 ◽  
Vol 138 (Suppl_1) ◽  
Author(s):  
Michelle R Santoso ◽  
Yuko Tada ◽  
Gentaro Ikeda ◽  
Ji-Hye Jung ◽  
Evgeniya Vaskova ◽  
...  

Background: Induced pluripotent stem cells (iPSCs) and their differentiated cardiomyocytes (iCMs) have tremendous potential as patient-specific therapy for myocardial injury (MI). Our previous work showed that the iCMs restore the injured murine myocardium through secretion of paracrine factors, modulating apoptotic pathways to restore the murine peri-infarct region (PIR). Hypothesis: iCM-derived exosomes (iCM-Ex), a major constituent of the iCM secretome, may salvage the injured cardiomyocytes in the PIR. Methods: iCM-Ex were precipitated from iCM supernatant and characterized using various molecular analyses. Immunodeficient mice sustained MIs and received iCMs, iCM-Ex, or PBS control via direct intramyocardial injection into the PIR. Cardiac MRI assessed LV ejection fraction (LVEF) and viability at 2- and 4-week post-injection. iCMs, iCM-Ex, and PIR tissue were isolated for molecular and histological analyses. Results: iCM-Ex measured approximately 142 nm and expressed CD63 and CD9. iCM and iCM-Ex miRNA profiles had significant overlap, indicating that exosomal content was reflective of the parent cell. In vitro iCM apoptosis was increased significantly by hypoxia and exosome biogenesis inhibition while iCM-Ex or rapamycin reduced iCM apoptosis (p<0.05, vs. control). Mice treated with iCMs or iCM-Ex had significantly improved LVEF and LV viability compared to the control (p<0.05). Apoptosis and fibrosis were significantly reduced in iCM- and iCM-Ex treated mice. Autophagy and associated mTOR signaling pathway were significantly enhanced in iCM-Ex treatment group. Conclusions: iCM-Ex demonstrated similar efficacy as the iCMs in improving post-MI cardiac function by regulating autophagy and apoptosis of hypoxia injured cardiomyocytes. This finding represents the potential of cell-free, patient-specific biologic to treat ischemic cardiomyopathy by stimulation of an endogenous repair mechanism.

Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1733 ◽  
Author(s):  
Michele Filippo Buono ◽  
Lisa von Boehmer ◽  
Jaan Strang ◽  
Simon P. Hoerstrup ◽  
Maximilian Y. Emmert ◽  
...  

Genetic cardiomyopathies are characterized by changes in the function and structure of the myocardium. The development of a novel in vitro model could help to better emulate healthy and diseased human heart conditions and may improve the understanding of disease mechanisms. In this study, for the first time, we demonstrated the generation of cardiac organoids using a triculture approach of human induced pluripotent stem-cell-derived cardiomyocytes (hiPS-CMs)—from healthy subjects and cardiomyopathy patients—human cardiac microvascular endothelial cells (HCMECs) and human cardiac fibroblasts (HCFs). We assessed the organoids’ suitability as a 3D cellular model for the representation of phenotypical features of healthy and cardiomyopathic hearts. We observed clear differences in structure and beating behavior between the organoid groups, depending on the type of hiPS-CMs (healthy versus cardiomyopathic) used. Organoids may thus prove a promising tool for the design and testing of patient-specific treatments as well as provide a platform for safer and more efficacious drug development.


2021 ◽  
Vol 22 (15) ◽  
pp. 8132
Author(s):  
Jennifer Zhang ◽  
Oscar Hou-In Chou ◽  
Yiu-Lam Tse ◽  
Kwong-Man Ng ◽  
Hung-Fat Tse

Inherited cardiomyopathies are among the major causes of heart failure and associated with significant mortality and morbidity. Currently, over 70 genes have been linked to the etiology of various forms of cardiomyopathy, some of which are X-linked. Due to the lack of appropriate cell and animal models, it has been difficult to model these X-linked cardiomyopathies. With the advancement of induced pluripotent stem cell (iPSC) technology, the ability to generate iPSC lines from patients with X-linked cardiomyopathy has facilitated in vitro modelling and drug testing for the condition. Nonetheless, due to the mosaicism of the X-chromosome inactivation, disease phenotypes of X-linked cardiomyopathy in heterozygous females are also usually more heterogeneous, with a broad spectrum of presentation. Recent advancements in iPSC procedures have enabled the isolation of cells with different lyonisation to generate isogenic disease and control cell lines. In this review, we will summarise the current strategies and examples of using an iPSC-based model to study different types of X-linked cardiomyopathy. The potential application of isogenic iPSC lines derived from a female patient with heterozygous Danon disease and drug screening will be demonstrated by our preliminary data. The limitations of an iPSC-derived cardiomyocyte-based platform will also be addressed.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Marcela K Preininger ◽  
Rajneesh Jha ◽  
Qingling Wu ◽  
Monalisa Singh ◽  
Joshua T Maxwell ◽  
...  

Introduction: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited arrhythmia syndrome characterized by diastolic store overload-induced Ca2+ waves during β-adrenergic receptor (β-AR) stimulation. Mysteriously, β-blockers are ineffective at abolishing stress-induced ventricular arrhythmias in ~25% of patients. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from these CPVT patients offer an attractive system for investigating the phenomenon, but it remains unknown whether iPSC-CMs can recapitulate clinically observed patient-specific drug responses. Hypothesis: This study assessed the hypothesis that patient-specific refractoriness to β-blocker therapy can be observed in vitro using CPVT iPSC-CMs. Methods: We generated iPSC-CMs from a control individual and a CPVT patient insensitive to the widely prescribed β-blocker nadolol, but responsive to flecainide, and compared the efficacy of the two drugs in vitro in diminishing diastolic Ca2+ waves and restoring Ca2+ spark parameters during β-AR stimulation. Results: In CPVT hiPSC-CMs (n = 34), β-AR agonism elicited intense diastolic Ca2+ waves and potentiated unduly frequent, large, and prolonged Ca2+ sparks compared to control iPSC-CMs (n = 12). Pursuant to the patient’s in vivo responses, nadolol-treated CPVT iPSC-CMs (n = 27) demonstrated inadequate improvement of Ca2+ handling defects during β-AR stimulation relative to flecainide-treated CPVT iPSC-CMs (n = 25). Nadolol showed no significant effect on the frequency of diastolic Ca2+ waves, but reduced mean amplitude by 50% (p < 0.0001). In contrast, flecainide reduced both frequency and amplitude by 83% (p < 0.001) and 72% (p < 0.0001), respectively. During nadolol treatment, Ca2+ spark frequency, width, and duration remained significantly altered, while flecainide restored all Ca2+ spark parameters to baseline levels. Conclusions: Clinically observed recalcitrance to β-blocker therapy in individuals with CPVT can be modeled in vitro using patient-derived iPSC-CMs. Furthermore, the efficacy of other drugs such as flecainide can be comparatively evaluated, supporting the use of patient-specific iPSC-CMs as a clinically-relevant implement of precision medicine.


2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Olivia T Ly ◽  
Grace Brown ◽  
Hanna Chen ◽  
Liang Hong ◽  
Xinge Wang ◽  
...  

Introduction: The limited success of pharmacological approaches to atrial fibrillation ( AF ) is due to limitations of in vitro and in vivo models and inaccessibility of human atrial tissue. Patient-specific induced pluripotent stem cell-derived atrial cardiomyocytes (iPSC-aCMs) are a robust platform to model the heterogeneous myocardial substrate of AF, but their immaturity limits their fidelity. Objective: We hypothesized that a combinatorial approach of biochemical (triiodothyronine [ T3 ], insulin-like growth factor-1 [ IGF-1 ], and dexamethasone; collectively TID ), bioenergetic (fatty acids [ FA ]), and electrical stimulation ( ES ) will enhance electrophysiological ( EP ), structural, and metabolic maturity of iPSC- a CMs. Methods: We assessed maturation with whole cell patch clamping, calcium transients, immunofluorescence (IF), Seahorse Analyzer, contractility assay, RT-PCR, Western Blotting, and RNA sequencing (RNAseq). Using a time series with RNAseq we identified signaling pathways and transcriptional regulation that drive EP, structural, and metabolic atrial development and compared iPSC-aCM maturity with human aCMs (haCMs) obtained from the same patient. Results: TID+FA+ES significantly improved structural organization and cell morphology ( Fig. 1a ), enhanced membrane potential stability and improved depolarization ( Fig. 1b ), improved Ca 2+ kinetics with faster and increased Ca 2+ release from sarcoplasmic reticulum ( Fig. 1c ), and increased expression of Na + , Ca 2+ , and K + channels, markers of structural maturity, FA metabolism, and oxidative phosphorylation ( Fig. 1d ). There was no difference in each parameter between TID+FA+ES iPSC-aCMs and haCMs from the same patient. Conclusion: Our optimized, combinatorial TID+FA+ES approach markedly enhanced EP, structural, and metabolic maturity of human iPSC-aCMs, which will be useful for elucidating the genetic basis of AF developing precision drug therapies.


2020 ◽  
Vol 10 ◽  
pp. 204512532096833
Author(s):  
Matteo Marcatili ◽  
Carlo Sala ◽  
Antonios Dakanalis ◽  
Fabrizia Colmegna ◽  
Armando D’Agostino ◽  
...  

Approximately 30% of Major Depressive Disorder (MDD) patients develop treatment-resistant depression (TRD). Among the different causes that make TRD so challenging in both clinical and research contexts, major roles are played by the inadequate understanding of MDD pathophysiology and the limitations of current pharmacological treatments. Nevertheless, the field of psychiatry is facing exciting times. Combined with recent advances in genome editing techniques, human induced pluripotent stem cell (hiPSC) technology is offering novel and unique opportunities in both disease modelling and drug discovery. This technology has allowed innovative disease-relevant patient-specific in vitro models to be set up for many psychiatric disorders. Such models hold great potential in enhancing our understanding of MDD pathophysiology and overcoming many of the well-known practical limitations inherent to animal and post-mortem models. Moreover, the field is approaching the advent of (es)ketamine, a glutamate N-methyl-d-aspartate (NMDA) receptor antagonist, claimed as one of the first and exemplary agents with rapid (in hours) antidepressant effects, even in TRD patients. Although ketamine seems poised to transform the treatment of depression, its exact mechanisms of action are still unclear but greatly demanded, as the resulting knowledge may provide a model to understand the mechanisms behind rapid-acting antidepressants, which may lead to the discovery of novel compounds for the treatment of depression. After reviewing insights into ketamine’s mechanisms of action (derived from preclinical animal studies) and depicting the current state of the art of hiPSC technology below, we will consider the implementation of an hiPSC technology-based TRD model for the study of ketamine’s fast acting antidepressant mechanisms of action.


Cells ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 140 ◽  
Author(s):  
Ruhel Ahmad ◽  
Vincenza Sportelli ◽  
Michael Ziller ◽  
Dietmar Spengler ◽  
Anke Hoffmann

Schizophrenia (SCZ) is a devastating mental disorder that is characterized by distortions in thinking, perception, emotion, language, sense of self, and behavior. Epidemiological evidence suggests that subtle perturbations in early neurodevelopment increase later susceptibility for disease, which typically manifests in adolescence to early adulthood. Early perturbations are thought to be significantly mediated through incompletely understood genetic risk factors. The advent of induced pluripotent stem cell (iPSC) technology allows for the in vitro analysis of disease-relevant neuronal cell types from the early stages of human brain development. Since iPSCs capture each donor’s genotype, comparison between neuronal cells derived from healthy and diseased individuals can provide important insights into the molecular and cellular basis of SCZ. In this review, we discuss results from an increasing number of iPSC-based SCZ/control studies that highlight alterations in neuronal differentiation, maturation, and neurotransmission in addition to perturbed mitochondrial function and micro-RNA expression. In light of this remarkable progress, we consider also ongoing challenges from the field of iPSC-based disease modeling that call for further improvements on the generation and design of patient-specific iPSC studies to ultimately progress from basic studies on SCZ to tailored treatments.


2018 ◽  
Vol 19 (12) ◽  
pp. 3870 ◽  
Author(s):  
Takayasu Mishima ◽  
Shinsuke Fujioka ◽  
Jiro Fukae ◽  
Junichi Yuasa-Kawada ◽  
Yoshio Tsuboi

Parkinson’s disease (PD) and atypical parkinsonian syndromes are age-dependent multifactorial neurodegenerative diseases, which are clinically characterized by bradykinesia, tremor, muscle rigidity and postural instability. Although these diseases share several common clinical phenotypes, their pathophysiological aspects vary among the disease categories. Extensive animal-based approaches, as well as postmortem studies, have provided important insights into the disease mechanisms and potential therapeutic targets. However, the exact pathological mechanisms triggering such diseases still remain elusive. Furthermore, the effects of drugs observed in animal models are not always reproduced in human clinical trials. By using induced pluripotent stem cell (iPSC) technology, it has become possible to establish patient-specific iPSCs from their somatic cells and to effectively differentiate these iPSCs into different types of neurons, reproducing some key aspects of the disease phenotypes in vitro. In this review, we summarize recent findings from iPSC-based modeling of PD and several atypical parkinsonian syndromes including multiple system atrophy, frontotemporal dementia and parkinsonism linked to chromosome 17 and Perry syndrome. Furthermore, we discuss future challenges and prospects for modeling and understanding PD and atypical parkinsonian syndromes.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sandra Lawrynowicz Leibel ◽  
Alicia Winquist ◽  
Irene Tseu ◽  
Jinxia Wang ◽  
Daochun Luo ◽  
...  

Abstract Surfactant protein B (SFTPB) deficiency is a fatal disease affecting newborn infants. Surfactant is produced by alveolar type II cells which can be differentiated in vitro from patient specific induced pluripotent stem cell (iPSC)-derived lung organoids. Here we show the differentiation of patient specific iPSCs derived from a patient with SFTPB deficiency into lung organoids with mesenchymal and epithelial cell populations from both the proximal and distal portions of the human lung. We alter the deficiency by infecting the SFTPB deficient iPSCs with a lentivirus carrying the wild type SFTPB gene. After differentiating the mutant and corrected cells into lung organoids, we show expression of SFTPB mRNA during endodermal and organoid differentiation but the protein product only after organoid differentiation. We also show the presence of normal lamellar bodies and the secretion of surfactant into the cell culture medium in the organoids of lentiviral infected cells. These findings suggest that a lethal lung disease can be targeted and corrected in a human lung organoid model in vitro.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1386
Author(s):  
Anna A. Kim ◽  
Erica A. Castillo ◽  
Kerry V. Lane ◽  
Gabriela V. Torres ◽  
Orlando Chirikian ◽  
...  

Human-induced pluripotent stem cell-derived cardiomyocytes are a potentially unlimited cell source and promising patient-specific in vitro model of cardiac diseases. Yet, these cells are limited by immaturity and population heterogeneity. Current in vitro studies aiming at better understanding of the mechanical and chemical cues in the microenvironment that drive cellular maturation involve deformable materials and precise manipulation of the microenvironment with, for example, micropatterns. Such microenvironment manipulation most often involves microfabrication protocols which are time-consuming, require cleanroom facilities and photolithography expertise. Here, we present a method to increase the scale of the fabrication pipeline, thereby enabling large-batch generation of shelf-stable microenvironment protein templates on glass chips. This decreases fabrication time and allows for more flexibility in the subsequent steps, for example, in tuning the material properties and the selection of extracellular matrix or cell proteins. Further, the fabrication of deformable hydrogels has been optimized for compatibility with these templates, in addition to the templates being able to be used to acquire protein patterns directly on the glass chips. With our approach, we have successfully controlled the shapes of cardiomyocytes seeded on Matrigel-patterned hydrogels.


2019 ◽  
Author(s):  
Lilianne Barbar ◽  
Tanya Jain ◽  
Matthew Zimmer ◽  
Ilya Kruglikov ◽  
Suzanne R. Burstein ◽  
...  

ABSTRACTAstrocytes play a central role in the central nervous system (CNS), maintaining brain homeostasis, providing metabolic support to neurons, regulating connectivity of neural circuits, and controlling blood flow as an integral part of the blood-brain barrier. They have been increasingly implicated in the mechanisms of neurodegenerative diseases, prompting a greater need for methods that enable their study. The advent of human induced pluripotent stem cell (iPSC) technology has made it possible to generate patient-specific astrocytes and CNS cells using protocols developed by our team and others as valuable disease models. Yet isolating astrocytes from primary specimens or from in vitro mixed cultures for downstream analyses has remained challenging. To address this need, we performed a screen for surface markers that allow FACS sorting of astrocytes. Here we demonstrate that CD49f is an effective marker for sorting functional human astrocytes. We sorted CD49f+ cells from a protocol we previously developed that generates a complex culture of oligodendrocytes, neurons and astrocytes from iPSCs. CD49f+-purified cells express all canonical astrocyte markers and perform characteristic functions, such as neuronal support and glutamate uptake. Of particular relevance to neurodegenerative diseases, CD49f+ astrocytes can be stimulated to take on an A1 neurotoxic phenotype, in which they secrete pro-inflammatory cytokines and show an impaired ability to support neuronal maturation. This study establishes a novel marker for isolating functional astrocytes from complex CNS cell populations, strengthening the use of iPSC-astrocytes for the study of their regulation and dysregulation in neurodegenerative diseases.


Sign in / Sign up

Export Citation Format

Share Document