scholarly journals Patient-Specific iPSC-Derived Neural Differentiated and Hepatocyte-like Cells, Carrying the Compound Heterozygous Mutation p.V1023Sfs*15/p.G992R, Present the “Variant” Biochemical Phenotype of Niemann-Pick Type C1 Disease

2021 ◽  
Vol 22 (22) ◽  
pp. 12184
Author(s):  
Christin Völkner ◽  
Maik Liedtke ◽  
Robert Untucht ◽  
Andreas Hermann ◽  
Moritz J. Frech

Niemann–Pick disease type C1 (NP-C1) is a rare lysosomal storage disorder caused by autosomal recessive mutations in the NPC1 gene. Patients display a wide spectrum on the clinical as well as on the molecular level, wherein a so-called “variant” biochemical phenotype can be observed. Here, we report an in vitro analysis of fibroblasts obtained from an NP-C1 patient carrying the undescribed compound heterozygous mutation p.V1023Sfs*15/p.G992R. Since NP-C1 is a neurovisceral disease and the patient suffers from severe neurological as well as hepatic symptoms, we extended our study to neural differentiated and hepatocyte-like cells derived from patient-specific induced pluripotent stem cells. We detected slightly increased intracellular cholesterol levels compared to the control cell line in fibroblasts, neural differentiated and hepatocyte-like cells, suggesting a “variant” biochemical phenotype. Furthermore, the total NPC1 protein, as well as post-ER glycoforms of the NPC1 protein, tended to be reduced. In addition, colocalization analysis revealed a mild reduction of the NPC1 protein in the lysosomes. The patient was diagnosed with NP-C1 at the age of 34 years, after an initial misdiagnosis of schizophrenia. After years of mild and unspecific symptoms, such as difficulties in coordination and concentration, symptoms progressed and the patient finally presented with ataxia, dysarthria, dysphagia, vertical supranuclear gaze palsy, and hepatosplenomegaly. Genetic testing finally pointed towards an NP-C1 diagnosis, revealing the so-far undescribed compound heterozygous mutation p.V1023Sfs*15/p.G992R in the NPC1 gene. In light of these findings, this case provides support for the p.G992R mutation being causative for a “variant” biochemical phenotype leading to an adult-onset type of NP-C1 disease.

2020 ◽  
Vol 21 (6) ◽  
pp. 2101
Author(s):  
Graham Brogden ◽  
Hadeel Shammas ◽  
Friederike Walters ◽  
Katia Maalouf ◽  
Anibh M. Das ◽  
...  

Niemann-Pick Type C (NPC) is an autosomal recessive lysosomal storage disease leading to progressive neurodegeneration. Mutations in the NPC1 gene, which accounts for 95% of the cases, lead to a defect in intra-lysosomal trafficking of cholesterol and an accumulation of storage material including cholesterol and sphingolipids in the endo-lysosomal system. Symptoms are progressive neurological and visceral deterioration, with variable onset and severity of the disease. This study investigates the influence of two different NPC1 mutations on the biochemical phenotype in fibroblasts isolated from NPC patients in comparison to healthy, wild type (WT) cells. Skin derived fibroblasts were cultured from one patient compound-heterozygous for D874V/D948Y mutations, which presented wild-type like intracellular trafficking of NPC1, and a second patient compound- heterozygous for I1061T/P887L mutations, which exhibited a more severe biochemical phenotype as revealed in the delayed trafficking of NPC1. Biochemical analysis using HPLC and TLC indicated that lipid accumulations were mutation-dependent and correlated with the trafficking pattern of NPC1: higher levels of cholesterol and glycolipids were associated with the mutations that exhibited delayed intracellular trafficking, as compared to their WT-like trafficked or wild type (WT) counterparts. Furthermore, variations in membrane structure was confirmed in these cell lines based on alteration in lipid rafts composition as revealed by the shift in flotillin-2 (FLOT2) distribution, a typical lipid rafts marker, which again showed marked alterations only in the NPC1 mutant showing major trafficking delay. Finally, treatment with N-butyldeoxynojirimycin (NB-DNJ, Miglustat) led to a reduction of stored lipids in cells from both patients to various extents, however, no normalisation in lipid raft structure was achieved. The data presented in this study help in understanding the varying biochemical phenotypes observed in patients harbouring different mutations, which explain why the effectiveness of NB-DNJ treatment is patient specific.


2020 ◽  
Vol 99 (1) ◽  
Author(s):  
Maria Cristina Costanzo ◽  
Antonio Gennaro Nicotera ◽  
Mirella Vinci ◽  
Aurelio Vitello ◽  
Agata Fiumara ◽  
...  

2020 ◽  
Vol 36 (3) ◽  
Author(s):  
Huma Arshad Cheema ◽  
Iqra Ghulam Rasool ◽  
Muhammad Nadeem Anjum ◽  
Muhammad Yasir Zahoor

Objective: Genetic variation analysis of rare autosomal recessive Niemann-Pick disease (NPD) Pakistani patients. Methods: We sequenced the SMPD1 gene including its all coding and flanking regions in seven unrelated sporadic patients suffering from Niemann-Pick disease through targeted exome sequencing. Genetic variants mapping and their protein predictions were evaluated using different bioinformatics tools and clinical phenotypes were correlated. The study was conducted from January 2018 to March 2019 at The Children’s Hospital Lahore. Results: We have mapped five different mutations in SMPD1 gene of enrolled patients with a novel homozygous missense variant (c.1718G>C) (p.Trp573Ser) in one patient. A missense mutation (c.1267C>T) (p.His423Tyr) has been identified in three unrelated patients. A nonsense mutation (c.1327C>T) (p.Arg443Term) and one missense mutation (c.1493G>A) (p.Arg498His) mapped in one patient each. A compound heterozygous mutation has been mapped in one patient (c.740G>A) (p.Gly247Asp); (c.1493G>A) (p.Arg498His). Pathogenic effect of novel variant has been predicted through in-silico analysis and has not been reported in general overall population in the globe. Conclusion: This is the first report of genetic demographic assessment of Niemann-Pick disease in Pakistan. The mapped mutations would be helpful to build a disease variants algorithm of Pakistani population. This will be used for determining disease clinical magnitude along with provision of genetic screening services in affected families. doi: https://doi.org/10.12669/pjms.36.3.467 How to cite this:Cheema HA, Rasool IG, Anjum MN, Zahoor MY. Mutational spectrum of SMPD1 gene in Pakistani Niemann-Pick disease patients. Pak J Med Sci. 2020;36(3):---------. doi: https://doi.org/10.12669/pjms.36.3.467 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2020 ◽  
Vol 10 (01) ◽  
pp. e134-e136
Author(s):  
Nida Mirza ◽  
Smita Malhotra ◽  
Anupam Sibal

AbstractProgressive familial intrahepatic cholestasis (PFIC) is a heterogeneous group of autosomal recessive disorders of childhood which presents with intermittent or progressive episodes of cholestasis, with jaundice and pruritus as most common presenting symptoms. PFIC type 3 occurs due to mutations in the ABCB4 gene, mutation in this gene has wide spectrum of features which include intrahepatic stones, cholelithiasis, PFIC type 3, and intrahepatic cholestasis of pregnancy. Here, we are reporting a peculiar case of young male adolescent with novel variant compound heterozygote missense mutation in ABCB4 gene who had gall stone as initial symptom, followed by symptoms of PFIC and eventually decompensated chronic liver disease.


2021 ◽  
Vol 22 (8) ◽  
pp. 4009
Author(s):  
Maik Liedtke ◽  
Christin Völkner ◽  
Alexandra V. Jürs ◽  
Franziska Peter ◽  
Michael Rabenstein ◽  
...  

Niemann-Pick type C2 (NP-C2) disease is a rare hereditary disease caused by mutations in the NPC2 gene. NPC2 is a small, soluble protein consisting of 151 amino acids, primarily expressed in late endosomes and lysosomes (LE/LY). Together with NPC1, a transmembrane protein found in these organelles, NPC2 accomplishes the exclusion of cholesterol; thus, both proteins are essential to maintain cellular cholesterol homeostasis. Consequently, mutations in the NPC2 or NPC1 gene result in pathophysiological accumulation of cholesterol and sphingolipids in LE/LY. The vast majority of Niemann-Pick type C disease patients, 95%, suffer from a mutation of NPC1, and only 5% display a mutation of NPC2. The biochemical phenotype of NP-C1 and NP-C2 appears to be indistinguishable, and both diseases share several commonalities in the clinical manifestation. Studies of the pathological mechanisms underlying NP-C2 are mostly based on NP-C2 animal models and NP-C2 patient-derived fibroblasts. Recently, we established induced pluripotent stem cells (iPSCs), derived from a donor carrying the NPC2 mutations c.58G>T/c.140G>T. Here, we present a profile of pathophysiological in vitro features, shared by NP-C1 and NP-C2, of neural differentiated cells obtained from the patient specific iPSCs. Profiling comprised a determination of the NPC2 protein level, detection of cholesterol accumulation by filipin staining, analysis of oxidative stress, and determination of autophagy. As expected, the NPC2-deficient cells displayed a significantly reduced amount of NPC2 protein, and, accordingly, we observed a significantly increased amount of cholesterol. Most notably, NPC2-deficient cells displayed only a slight increase of reactive oxygen species (ROS), suggesting that they do not suffer from oxidative stress and express catalase at a high level. As a site note, comparable NPC1-deficient cells suffer from a lack of catalase and display an increased level of ROS. In summary, this cell line provides a valuable tool to gain deeper understanding, not only of the pathogenic mechanism of NP-C2, but also of NP-C1.


2021 ◽  
Vol 22 (9) ◽  
pp. 4475
Author(s):  
Claudia Berger ◽  
Nora Klöting

Leptin and its receptor are essential for regulating food intake, energy expenditure, glucose homeostasis and fertility. Mutations within leptin or the leptin receptor cause early-onset obesity and hyperphagia, as described in human and animal models. The effect of both heterozygous and homozygous variants is much more investigated than compound heterozygous ones. Recently, we discovered a spontaneous compound heterozygous mutation within the leptin receptor, resulting in a considerably more obese phenotype than described for the homozygous leptin receptor deficient mice. Accordingly, we focus on compound heterozygous mutations of the leptin receptor and their effects on health, as well as possible therapy options in human and animal models in this review.


Sign in / Sign up

Export Citation Format

Share Document