scholarly journals Sparsely Connected Autoencoders: A Multi-Purpose Tool for Single Cell omics Analysis

2021 ◽  
Vol 22 (23) ◽  
pp. 12755
Author(s):  
Luca Alessandri ◽  
Maria Luisa Ratto ◽  
Sandro Gepiro Contaldo ◽  
Marco Beccuti ◽  
Francesca Cordero ◽  
...  

Background: Biological processes are based on complex networks of cells and molecules. Single cell multi-omics is a new tool aiming to provide new incites in the complex network of events controlling the functionality of the cell. Methods: Since single cell technologies provide many sample measurements, they are the ideal environment for the application of Deep Learning and Machine Learning approaches. An autoencoder is composed of an encoder and a decoder sub-model. An autoencoder is a very powerful tool in data compression and noise removal. However, the decoder model remains a black box from which is impossible to depict the contribution of the single input elements. We have recently developed a new class of autoencoders, called Sparsely Connected Autoencoders (SCA), which have the advantage of providing a controlled association among the input layer and the decoder module. This new architecture has the benefit that the decoder model is not a black box anymore and can be used to depict new biologically interesting features from single cell data. Results: Here, we show that SCA hidden layer can grab new information usually hidden in single cell data, like providing clustering on meta-features difficult, i.e. transcription factors expression, or not technically not possible, i.e. miRNA expression, to depict in single cell RNAseq data. Furthermore, SCA representation of cell clusters has the advantage of simulating a conventional bulk RNAseq, which is a data transformation allowing the identification of similarity among independent experiments. Conclusions: In our opinion, SCA represents the bioinformatics version of a universal “Swiss-knife” for the extraction of hidden knowledgeable features from single cell omics data.

Author(s):  
Luca Alessandri ◽  
Maria Luisa Ratto ◽  
Sandro Gepiro Contaldo ◽  
Marco Beccuti ◽  
Francesca Cordero ◽  
...  

Background: Biological processes are based on complex networks of cells and molecules. Single cell multi-OMICs is a new tool aiming to provide new incites in the complex network of events controlling the functionality of the cell.; Methods: Since single cell technologies provide many sample measurements, they are the ideal environment for the application of deep learning and machine learning approaches. An autoencoder (AE) is composed of an encoder and a decoder sub-model. AE are very powerful in data compression and noise removal. However, the decoder model remains a black box from which is impossible to depict the contribution of the single input elements. We have recently developed a new class of autoencoders, called Sparsely Connected Autoencoders (SCA), which have the advantage of providing a controlled association among the input layer and the decoder module. This new architecture has the benefit that the decoder model is no anymore a black box and it can be used to depict new biologically interesting features from single cell data; Results: In this paper, we show that SCA hidden layer can grab new information usually hidden in single cell data, like as providing clustering on meta-features difficult, i.e. transcription factors expression, or impossible, miRNA expression, to depict in single cell RNAseq data. Furthermore, a SCA representation of cell clusters has the advantage of simulating a conventional bulk RNAseq, which is a data transformation allowing the identification of similarity among independent experiments; Conclusions: In our opinion, SCA represent the bioinformatics version of a “Swiss Army knife” for the extraction of hidden knowledgeable features from single cell OMICs data.


2021 ◽  
Author(s):  
Nathanael Andrews ◽  
Martin Enge

Abstract CIM-seq is a tool for deconvoluting RNA-seq data from cell multiplets (clusters of two or more cells) in order to identify physically interacting cell in a given tissue. The method requires two RNAseq data sets from the same tissue: one of single cells to be used as a reference, and one of cell multiplets to be deconvoluted. CIM-seq is compatible with both droplet based sequencing methods, such as Chromium Single Cell 3′ Kits from 10x genomics; and plate based methods, such as Smartseq2. The pipeline consists of three parts: 1) Dissociation of the target tissue, FACS sorting of single cells and multiplets, and conventional scRNA-seq 2) Feature selection and clustering of cell types in the single cell data set - generating a blueprint of transcriptional profiles in the given tissue 3) Computational deconvolution of multiplets through a maximum likelihood estimation (MLE) to determine the most likely cell type constituents of each multiplet.


Genes ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 1098
Author(s):  
Taylor M. Weiskittel ◽  
Cristina Correia ◽  
Grace T. Yu ◽  
Choong Yong Ung ◽  
Scott H. Kaufmann ◽  
...  

Together, single-cell technologies and systems biology have been used to investigate previously unanswerable questions in biomedicine with unparalleled detail. Despite these advances, gaps in analytical capacity remain. Machine learning, which has revolutionized biomedical imaging analysis, drug discovery, and systems biology, is an ideal strategy to fill these gaps in single-cell studies. Machine learning additionally has proven to be remarkably synergistic with single-cell data because it remedies unique challenges while capitalizing on the positive aspects of single-cell data. In this review, we describe how systems-biology algorithms have layered machine learning with biological components to provide systems level analyses of single-cell omics data, thus elucidating complex biological mechanisms. Accordingly, we highlight the trifecta of single-cell, systems-biology, and machine-learning approaches and illustrate how this trifecta can significantly contribute to five key areas of scientific research: cell trajectory and identity, individualized medicine, pharmacology, spatial omics, and multi-omics. Given its success to date, the systems-biology, single-cell omics, and machine-learning trifecta has proven to be a potent combination that will further advance biomedical research.


2021 ◽  
Author(s):  
Jordan W. Squair ◽  
Michael A. Skinnider ◽  
Matthieu Gautier ◽  
Leonard J. Foster ◽  
Grégoire Courtine
Keyword(s):  

2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Yuanyuan Li ◽  
Ping Luo ◽  
Yi Lu ◽  
Fang-Xiang Wu

Abstract Background With the development of the technology of single-cell sequence, revealing homogeneity and heterogeneity between cells has become a new area of computational systems biology research. However, the clustering of cell types becomes more complex with the mutual penetration between different types of cells and the instability of gene expression. One way of overcoming this problem is to group similar, related single cells together by the means of various clustering analysis methods. Although some methods such as spectral clustering can do well in the identification of cell types, they only consider the similarities between cells and ignore the influence of dissimilarities on clustering results. This methodology may limit the performance of most of the conventional clustering algorithms for the identification of clusters, it needs to develop special methods for high-dimensional sparse categorical data. Results Inspired by the phenomenon that same type cells have similar gene expression patterns, but different types of cells evoke dissimilar gene expression patterns, we improve the existing spectral clustering method for clustering single-cell data that is based on both similarities and dissimilarities between cells. The method first measures the similarity/dissimilarity among cells, then constructs the incidence matrix by fusing similarity matrix with dissimilarity matrix, and, finally, uses the eigenvalues of the incidence matrix to perform dimensionality reduction and employs the K-means algorithm in the low dimensional space to achieve clustering. The proposed improved spectral clustering method is compared with the conventional spectral clustering method in recognizing cell types on several real single-cell RNA-seq datasets. Conclusions In summary, we show that adding intercellular dissimilarity can effectively improve accuracy and achieve robustness and that improved spectral clustering method outperforms the traditional spectral clustering method in grouping cells.


Cell ◽  
2021 ◽  
Author(s):  
Yuhan Hao ◽  
Stephanie Hao ◽  
Erica Andersen-Nissen ◽  
William M. Mauck ◽  
Shiwei Zheng ◽  
...  

Author(s):  
Zhen Miao ◽  
Benjamin D. Humphreys ◽  
Andrew P. McMahon ◽  
Junhyong Kim

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Luca Alessandri ◽  
Francesca Cordero ◽  
Marco Beccuti ◽  
Nicola Licheri ◽  
Maddalena Arigoni ◽  
...  

AbstractSingle-cell RNA sequencing (scRNAseq) is an essential tool to investigate cellular heterogeneity. Thus, it would be of great interest being able to disclose biological information belonging to cell subpopulations, which can be defined by clustering analysis of scRNAseq data. In this manuscript, we report a tool that we developed for the functional mining of single cell clusters based on Sparsely-Connected Autoencoder (SCA). This tool allows uncovering hidden features associated with scRNAseq data. We implemented two new metrics, QCC (Quality Control of Cluster) and QCM (Quality Control of Model), which allow quantifying the ability of SCA to reconstruct valuable cell clusters and to evaluate the quality of the neural network achievements, respectively. Our data indicate that SCA encoded space, derived by different experimentally validated data (TF targets, miRNA targets, Kinase targets, and cancer-related immune signatures), can be used to grasp single cell cluster-specific functional features. In our implementation, SCA efficacy comes from its ability to reconstruct only specific clusters, thus indicating only those clusters where the SCA encoding space is a key element for cells aggregation. SCA analysis is implemented as module in rCASC framework and it is supported by a GUI to simplify it usage for biologists and medical personnel.


Sign in / Sign up

Export Citation Format

Share Document