scholarly journals CIM-seq

2021 ◽  
Author(s):  
Nathanael Andrews ◽  
Martin Enge

Abstract CIM-seq is a tool for deconvoluting RNA-seq data from cell multiplets (clusters of two or more cells) in order to identify physically interacting cell in a given tissue. The method requires two RNAseq data sets from the same tissue: one of single cells to be used as a reference, and one of cell multiplets to be deconvoluted. CIM-seq is compatible with both droplet based sequencing methods, such as Chromium Single Cell 3′ Kits from 10x genomics; and plate based methods, such as Smartseq2. The pipeline consists of three parts: 1) Dissociation of the target tissue, FACS sorting of single cells and multiplets, and conventional scRNA-seq 2) Feature selection and clustering of cell types in the single cell data set - generating a blueprint of transcriptional profiles in the given tissue 3) Computational deconvolution of multiplets through a maximum likelihood estimation (MLE) to determine the most likely cell type constituents of each multiplet.

2018 ◽  
Author(s):  
Brian Hie ◽  
Bryan Bryson ◽  
Bonnie Berger

AbstractResearchers are generating single-cell RNA sequencing (scRNA-seq) profiles of diverse biological systems1–4 and every cell type in the human body.5 Leveraging this data to gain unprecedented insight into biology and disease will require assembling heterogeneous cell populations across multiple experiments, laboratories, and technologies. Although methods for scRNA-seq data integration exist6,7, they often naively merge data sets together even when the data sets have no cell types in common, leading to results that do not correspond to real biological patterns. Here we present Scanorama, inspired by algorithms for panorama stitching, that overcomes the limitations of existing methods to enable accurate, heterogeneous scRNA-seq data set integration. Our strategy identifies and merges the shared cell types among all pairs of data sets and is orders of magnitude faster than existing techniques. We use Scanorama to combine 105,476 cells from 26 diverse scRNA-seq experiments across 9 different technologies into a single comprehensive reference, demonstrating how Scanorama can be used to obtain a more complete picture of cellular function across a wide range of scRNA-seq experiments.


2019 ◽  
Author(s):  
Chenling Xu ◽  
Romain Lopez ◽  
Edouard Mehlman ◽  
Jeffrey Regier ◽  
Michael I. Jordan ◽  
...  

AbstractAs single-cell transcriptomics becomes a mainstream technology, the natural next step is to integrate the accumulating data in order to achieve a common ontology of cell types and states. However, owing to various nuisance factors of variation, it is not straightforward how to compare gene expression levels across data sets and how to automatically assign cell type labels in a new data set based on existing annotations. In this manuscript, we demonstrate that our previously developed method, scVI, provides an effective and fully probabilistic approach for joint representation and analysis of cohorts of single-cell RNA-seq data sets, while accounting for uncertainty caused by biological and measurement noise. We also introduce single-cell ANnotation using Variational Inference (scANVI), a semi-supervised variant of scVI designed to leverage any available cell state annotations — for instance when only one data set in a cohort is annotated, or when only a few cells in a single data set can be labeled using marker genes. We demonstrate that scVI and scANVI compare favorably to the existing methods for data integration and cell state annotation in terms of accuracy, scalability, and adaptability to challenging settings such as a hierarchical structure of cell state labels. We further show that different from existing methods, scVI and scANVI represent the integrated datasets with a single generative model that can be directly used for any probabilistic decision making task, using differential expression as our case study. scVI and scANVI are available as open source software and can be readily used to facilitate cell state annotation and help ensure consistency and reproducibility across studies.


2018 ◽  
Author(s):  
Martin Pirkl ◽  
Niko Beerenwinkel

AbstractMotivationNew technologies allow for the elaborate measurement of different traits of single cells. These data promise to elucidate intra-cellular networks in unprecedented detail and further help to improve treatment of diseases like cancer. However, cell populations can be very heterogeneous.ResultsWe developed a mixture of Nested Effects Models (M&NEM) for single-cell data to simultaneously identify different cellular sub-populations and their corresponding causal networks to explain the heterogeneity in a cell population. For inference, we assign each cell to a network with a certain probability and iteratively update the optimal networks and cell probabilities in an Expectation Maximization scheme. We validate our method in the controlled setting of a simulation study and apply it to three data sets of pooled CRISPR screens generated previously by two novel experimental techniques, namely Crop-Seq and Perturb-Seq.AvailabilityThe mixture Nested Effects Model (M&NEM) is available as the R-package mnem at https://github.com/cbgethz/mnem/[email protected], [email protected] informationSupplementary data are available.online.


2021 ◽  
Author(s):  
Xianjie Huang ◽  
Yuanhua Huang

AbstractSummarySingle-cell sequencing is an increasingly used technology and has promising applications in basic research and clinical translations. However, genotyping methods developed for bulk sequencing data have not been well adapted for single-cell data, in terms of both computational parallelization and simplified user interface. Here we introduce a software, cellsnp-lite, implemented in C/C++ and based on well supported package htslib, for genotyping in single-cell sequencing data for both droplet and well based platforms. On various experimental data sets, it shows substantial improvement in computational speed and memory efficiency with retaining highly concordant results compared to existing methods. Cellsnp-lite therefore lightens the genetic analysis for increasingly large single-cell data.AvailabilityThe source code is freely available at https://github.com/single-cell-genetics/[email protected]


2020 ◽  
Author(s):  
Hy Vuong ◽  
Thao Truong ◽  
Tan Phan ◽  
Son Pham

AbstractMost widely used tools for finding marker genes in single cell data (SeuratT/NegBinom/Poisson, CellRanger, EdgeR, limmatrend) use a conventional definition of differentially expressed genes: genes with different mean expression values. However, in single-cell data, a cell population can be a mixture of many cell types/cell states, hence the mean expression of genes cannot represent the whole population. In addition, these tools assume that gene expression of a population belongs to a specific family of distribution. This assumption is often violated in single-cell data. In this work, we define marker genes of a cell population as genes that can be used to distinguish cells in the population from cells in other populations. Besides log-fold change, we devise a new metric to classify genes into up-regulated, down-regulated, and transitional states. In a benchmark for finding up-regulated and down-regulated genes, our tool outperforms all compared methods, including Seurat, ROTS, scDD, edgeR, MAST, limma, normal t-test, Wilcoxon and Kolmogorov–Smirnov test. Our method is much faster than all compared methods, therefore, enables interactive analysis for large single-cell data sets in BioTuring Browser. Venice algorithm is available within Signac package: https://github.com/bioturing/signac1).


2018 ◽  
Author(s):  
Changlin Wan ◽  
Wennan Chang ◽  
Yu Zhang ◽  
Fenil Shah ◽  
Xiaoyu Lu ◽  
...  

ABSTRACTA key challenge in modeling single-cell RNA-seq (scRNA-seq) data is to capture the diverse gene expression states regulated by different transcriptional regulatory inputs across single cells, which is further complicated by a large number of observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model that stems from the kinetic relationships between the transcriptional regulatory inputs and metabolism of mRNA and gene expression abundance in a cell. LTMG infers the expression multi-modalities across single cell entities, representing a gene’s diverse expression states; meanwhile the dropouts and low expressions are treated as left truncated, specifically representing an expression state that is under suppression. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of single-cell data sets, comparing to three other state of the art models. In addition, our systems kinetic approach of handling the low and zero expressions and correctness of the identified multimodality are validated on several independent experimental data sets. Application on data of complex tissues demonstrated the capability of LTMG in extracting varied expression states specific to cell types or cell functions. Based on LTMG, a differential gene expression test and a co-regulation module identification method, namely LTMG-DGE and LTMG-GCR, are further developed. We experimentally validated that LTMG-DGE is equipped with higher sensitivity and specificity in detecting differentially expressed genes, compared with other five popular methods, and that LTMG-GCR is capable to retrieve the gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA.


2017 ◽  
Author(s):  
Giovanni Iacono ◽  
Elisabetta Mereu ◽  
Amy Guillaumet-Adkins ◽  
Roser Corominas ◽  
Ivon Cuscó ◽  
...  

AbstractSingle-cell RNA sequencing significantly deepened our insights into complex tissues and latest techniques are capable processing ten-thousands of cells simultaneously. With bigSCale, we provide an analytical framework being scalable to analyze millions of cells, addressing challenges of future large datasets. Unlike previous methods, bigSCale does not constrain data to fit an a priori-defined distribution and instead uses an accurate numerical model of noise. We evaluated the performance of bigSCale using a biological model of aberrant gene expression in patient derived neuronal progenitor cells and simulated datasets, which underlined its speed and accuracy in differential expression analysis. We further applied bigSCale to analyze 1.3 million cells from the mouse developing forebrain. Herein, we identified rare populations, such as Reelin positive Cajal-Retzius neurons, for which we determined a previously not recognized heterogeneity associated to distinct differentiation stages, spatial organization and cellular function. Together, bigSCale presents a perfect solution to address future challenges of large single-cell datasets.Extended AbstractSingle-cell RNA sequencing (scRNAseq) significantly deepened our insights into complex tissues by providing high-resolution phenotypes for individual cells. Recent microfluidic-based methods are scalable to ten-thousands of cells, enabling an unbiased sampling and comprehensive characterization without prior knowledge. Increasing cell numbers, however, generates extremely big datasets, which extends processing time and challenges computing resources. Current scRNAseq analysis tools are not designed to analyze datasets larger than from thousands of cells and often lack sensitivity and specificity to identify marker genes for cell populations or experimental conditions. With bigSCale, we provide an analytical framework for the sensitive detection of population markers and differentially expressed genes, being scalable to analyze millions of single cells. Unlike other methods that use simple or mixture probabilistic models with negative binomial, gamma or Poisson distributions to handle the noise and sparsity of scRNAseq data, bigSCale does not constrain the data to fit an a priori-defined distribution. Instead, bigSCale uses large sample sizes to estimate a highly accurate and comprehensive numerical model of noise and gene expression. The framework further includes modules for differential expression (DE) analysis, cell clustering and population marker identification. Moreover, a directed convolution strategy allows processing of extremely large data sets, while preserving the transcript information from individual cells.We evaluate the performance of bigSCale using a biological model for reduced or elevated gene expression levels. Specifically, we perform scRNAseq of 1,920 patient derived neuronal progenitor cells from Williams-Beuren and 7q11.23 microduplication syndrome patients, harboring a deletion or duplication of 7q11.23, respectively. The affected region contains 28 genes whose transcriptional levels vary in line with their allele frequency. BigSCale detects expression changes with respect to cells from a healthy donor and outperforms other methods for single-cell DE analysis in sensitivity. Simulated data sets, underline the performance of bigSCale in DE analysis as it is faster and more sensitive and specific than other methods. The probabilistic model of cell-distances within bigSCale is further suitable for unsupervised clustering and the identification of cell types and subpopulations. Using bigSCale, we identify all major cell types of the somatosensory cortex and hippocampus analyzing 3,005 cells from adult mouse brains. Remarkably, we increase the number of cell population specific marker genes 4-6-fold compared to the original analysis and, moreover, define markers of higher order cell types. These include CD90 (Thy1), a neuronal surface receptor, potentially suitable for isolating intact neurons from complex brain samples.To test its applicability for large data sets, we apply bigSCale on scRNAseq data from 1.3 million cells derived from the pallium of the mouse developing forebrain (E18, 10x Genomics). Our directed down-sampling strategy accumulates transcript counts from cells with similar transcriptional profiles into index cell transcriptomes, thereby defining cellular clusters with improved resolution. Accordingly, index cell clusters provide a rich resource of marker genes for the main brain cell types and less frequent subpopulations. Our analysis of rare populations includes poorly characterized developmental cell types, such as neuron progenitors from the subventricular zone and neocortical Reelin positive neurons known as Cajal-Retzius (CR) cells. The latter represent a transient population which regulates the laminar formation of the developing neocortex and whose malfunctioning causes major neurodevelopmental disorders like autism or schizophrenia. Most importantly, index cell cluster can be deconvoluted to individual cell level for targeted analysis of populations of interest. Through decomposition of Reelin positive neurons, we determined a previously not recognized heterogeneity among CR cells, which we could associate to distinct differentiation stages as well as spatial and functional differences in the developing mouse brain. Specifically, subtypes of CR cells identified by bigSCale express different compositions of NMDA, AMPA and glycine receptor subunits, pointing to subpopulations with distinct membrane properties. Furthermore, we found Cxcl12, a chemokine secreted by the meninges and regulating the tangential migration of CR cells, to be also expressed in CR cells located in the marginal zone of the neocortex, indicating a self-regulated migration capacity.Together, bigSCale presents a perfect solution for the processing and analysis of scRNAseq data from millions of single cells. Its speed and sensitivity makes it suitable to the address future challenges of large single-cell data sets.


2019 ◽  
Author(s):  
Samuel A Danziger ◽  
David L Gibbs ◽  
Ilya Shmulevich ◽  
Mark McConnell ◽  
Matthew WB Trotter ◽  
...  

AbstractImmune cell infiltration of tumors can be an important component for determining patient outcomes, e.g. by inferring immune cell presence by deconvolving gene expression data drawn from a heterogenous mix of cell types. One particularly powerful family of deconvolution techniques uses signature matrices of genes that uniquely identify each cell type as determined from cell type purified gene expression data. Many methods of this type have been recently published, often including new signature matrices appropriate for a single purpose, such as investigating a specific type of tumor. The package ADAPTS helps users make the most of this expanding knowledge base by introducing a framework for cell type deconvolution. ADAPTS implements modular tools for customizing signature matrices for new tissue types by adding custom cell types or building new matrices de novo, including from single cell RNAseq data. It includes a common interface to several popular deconvolution algorithms that use a signature matrix to estimate the proportion of cell types present in heterogenous samples. ADAPTS also implements a novel method for clustering cell types into groups that are hard to distinguish by deconvolution and then re-splitting those clusters using hierarchical deconvolution. We demonstrate that the techniques implemented in ADAPTS improve the ability to reconstruct the cell types present in a single cell RNAseq data set in a blind predictive analysis. ADAPTS is currently available for use in R on CRAN and GitHub.


2018 ◽  
Author(s):  
Hyunghoon Cho ◽  
Bonnie Berger ◽  
Jian Peng

SummarySingle-cell RNA sequencing is becoming effective and accessible as emerging technologies push its scale to millions of cells and beyond. Visualizing the landscape of single cell expression has been a fundamental tool in single cell analysis. However, standard methods for visualization, such as t-stochastic neighbor embedding (t-SNE), not only lack scalability to data sets with millions of cells, but also are unable to generalize to new cells, an important ability for transferring knowledge across fast-accumulating data sets. We introduce net-SNE, which trains a neural network to learn a high quality visualization of single cells that newly generalizes to unseen data. While matching the visualization quality of t-SNE on 14 benchmark data sets of varying sizes, from hundreds to 1.3 million cells, net-SNE also effectively positions previously unseen cells, even when an entire subtype is missing from the initial data set or when the new cells are from a different sequencing experiment. Furthermore, given a “reference” visualization, net-SNE can vastly reduce the computational burden of visualizing millions of single cells from multiple days to just a few minutes of runtime. Our work provides a general framework for newly bootstrapping single cell analysis from existing data sets.


2019 ◽  
Vol 47 (18) ◽  
pp. e111-e111 ◽  
Author(s):  
Changlin Wan ◽  
Wennan Chang ◽  
Yu Zhang ◽  
Fenil Shah ◽  
Xiaoyu Lu ◽  
...  

Abstract A key challenge in modeling single-cell RNA-seq data is to capture the diversity of gene expression states regulated by different transcriptional regulatory inputs across individual cells, which is further complicated by largely observed zero and low expressions. We developed a left truncated mixture Gaussian (LTMG) model, from the kinetic relationships of the transcriptional regulatory inputs, mRNA metabolism and abundance in single cells. LTMG infers the expression multi-modalities across single cells, meanwhile, the dropouts and low expressions are treated as left truncated. We demonstrated that LTMG has significantly better goodness of fitting on an extensive number of scRNA-seq data, comparing to three other state-of-the-art models. Our biological assumption of the low non-zero expressions, rationality of the multimodality setting, and the capability of LTMG in extracting expression states specific to cell types or functions, are validated on independent experimental data sets. A differential gene expression test and a co-regulation module identification method are further developed. We experimentally validated that our differential expression test has higher sensitivity and specificity, compared with other five popular methods. The co-regulation analysis is capable of retrieving gene co-regulation modules corresponding to perturbed transcriptional regulations. A user-friendly R package with all the analysis power is available at https://github.com/zy26/LTMGSCA.


Sign in / Sign up

Export Citation Format

Share Document