scholarly journals Long-Term Effects of Neural Precursor Cell Transplantation on Secondary Injury Processes and Functional Recovery after Severe Cervical Contusion-Compression Spinal Cord Injury

2021 ◽  
Vol 22 (23) ◽  
pp. 13106
Author(s):  
Alexander Younsi ◽  
Guoli Zheng ◽  
Lennart Riemann ◽  
Moritz Scherer ◽  
Hao Zhang ◽  
...  

Cervical spinal cord injury (SCI) remains a devastating event without adequate treatment options despite decades of research. In this context, the usefulness of common preclinical SCI models has been criticized. We, therefore, aimed to use a clinically relevant animal model of severe cervical SCI to assess the long-term effects of neural precursor cell (NPC) transplantation on secondary injury processes and functional recovery. To this end, we performed a clip contusion-compression injury at the C6 level in 40 female Wistar rats and a sham surgery in 10 female Wistar rats. NPCs, isolated from the subventricular zone of green fluorescent protein (GFP) expressing transgenic rat embryos, were transplanted ten days after the injury. Functional recovery was assessed weekly, and FluoroGold (FG) retrograde fiber-labeling, as well as manganese-enhanced magnetic resonance imaging (MEMRI), were performed prior to the sacrifice of the animals eight weeks after SCI. After cryosectioning of the spinal cords, immunofluorescence staining was conducted. Results were compared between the treatment groups (NPC, Vehicle, Sham) and statistically analyzed (p < 0.05 was considered significant). Despite the severity of the injury, leading to substantial morbidity and mortality during the experiment, long-term survival of the engrafted NPCs with a predominant differentiation into oligodendrocytes could be observed after eight weeks. While myelination of the injured spinal cord was not significantly improved, NPC treated animals showed a significant increase of intact perilesional motor neurons and preserved spinal tracts compared to untreated Vehicle animals. These findings were associated with enhanced preservation of intact spinal cord tissue. However, reactive astrogliosis and inflammation where not significantly reduced by the NPC-treatment. While differences in the Basso–Beattie–Bresnahan (BBB) score and the Gridwalk test remained insignificant, animals in the NPC group performed significantly better in the more objective CatWalk XT gait analysis, suggesting some beneficial effects of the engrafted NPCs on the functional recovery after severe cervical SCI.

Spinal Cord ◽  
2006 ◽  
Vol 45 (5) ◽  
pp. 338-348 ◽  
Author(s):  
K D Anderson ◽  
J F Borisoff ◽  
R D Johnson ◽  
S A Stiens ◽  
S L Elliott

2015 ◽  
Vol 44 ◽  
pp. 68-81 ◽  
Author(s):  
Yuriy Pomeshchik ◽  
Iurii Kidin ◽  
Paula Korhonen ◽  
Ekaterina Savchenko ◽  
Merja Jaronen ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Daniel J. Hellenbrand ◽  
Charles M. Quinn ◽  
Zachariah J. Piper ◽  
Carolyn N. Morehouse ◽  
Jordyn A. Fixel ◽  
...  

AbstractTraumatic spinal cord injury (SCI) is a devastating neurological condition that results in a loss of motor and sensory function. Although extensive research to develop treatments for SCI has been performed, to date, none of these treatments have produced a meaningful amount of functional recovery after injury. The primary injury is caused by the initial trauma to the spinal cord and results in ischemia, oxidative damage, edema, and glutamate excitotoxicity. This process initiates a secondary injury cascade, which starts just a few hours post-injury and may continue for more than 6 months, leading to additional cell death and spinal cord damage. Inflammation after SCI is complex and driven by a diverse set of cells and signaling molecules. In this review, we utilize an extensive literature survey to develop the timeline of local immune cell and cytokine behavior after SCI in rodent models. We discuss the precise functional roles of several key cytokines and their effects on a variety of cell types involved in the secondary injury cascade. Furthermore, variations in the inflammatory response between rats and mice are highlighted. Since current SCI treatment options do not successfully initiate functional recovery or axonal regeneration, identifying the specific mechanisms attributed to secondary injury is critical. With a more thorough understanding of the complex SCI pathophysiology, effective therapeutic targets with realistic timelines for intervention may be established to successfully attenuate secondary damage.


2016 ◽  
Vol 33 (10) ◽  
pp. 917-928 ◽  
Author(s):  
Samir P. Patel ◽  
Taylor D. Smith ◽  
Jenna L. VanRooyen ◽  
David Powell ◽  
David H. Cox ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Yi-Fan Li ◽  
Tie Li ◽  
Da-Wei Zhang ◽  
Hui Xue ◽  
Dong Chen ◽  
...  

The present study aimed to evaluate the role of the combination treatment of methylprednisolone (MP) and electroacupuncture (EA) in regeneration of nerve fibers and functional recovery in rats with spinal cord injury (SCI). Female Wistar rats were used for an SCI model by using a weight-drop hammer at levels T10 (spinal cord segment corresponding to the 10th thoracic vertebra). Four groups received different treatments for the study: SCI control, MP, MP and EA, and Sham. The growth of nerve fibers was examined by counting fluorescein positive nerve fibers. The motor functional recovery was evaluated by Basso, Beattie, Bresnahan (BBB) score, and electrophysiology analysis. We found that, compared to MP groups, there were more well-oriented and paralleled fluorescein positive nerve fibers in MP and EA group. Both latencies and amplitudes of the Motor Evoked Potential (MEP) in the combination therapy of MP and EA were higher than MP group. Additionally, recovered hindlimb movements were sustained in most rats in the MP and EA group. Our study indicated that combination therapies could become a powerful treatment for SCI in rats.


2019 ◽  
Vol 26 (9) ◽  
pp. 917-923
Author(s):  
Nasrin Abolhasanpour ◽  
Akram Eidi ◽  
Sakineh Hajebrahimi ◽  
Siamak Reyhani‐Rad ◽  
Hashim Hashim

Sign in / Sign up

Export Citation Format

Share Document