scholarly journals Combined In Silico, Ex Vivo, and In Vivo Assessment of L-17, a Thiadiazine Derivative with Putative Neuro- and Cardioprotective and Antidepressant Effects

2021 ◽  
Vol 22 (24) ◽  
pp. 13626
Author(s):  
Alexey Sarapultsev ◽  
Pavel Vassiliev ◽  
Daniil Grinchii ◽  
Alexander Kiss ◽  
Mojmir Mach ◽  
...  

Depression associated with poor general medical condition, such as post-stroke (PSD) or post-myocardial infarction (PMID) depression, is characterized by resistance to classical antidepressants. Special treatment strategies should thus be developed for these conditions. Our study aims to investigate the mechanism of action of 2-morpholino-5-phenyl-6H-1,3,4-thiadiazine, hydrobromide (L-17), a recently designed thiadiazine derivative with putative neuro- and cardioprotective and antidepressant-like effects, using combined in silico (for prediction of the molecular binding mechanisms), ex vivo (for assessment of the neural excitability using c-Fos immunocytochemistry), and in vivo (for direct examination of the neuronal excitability) methodological approaches. We found that the predicted binding affinities of L-17 to serotonin (5-HT) transporter (SERT) and 5-HT3 and 5-HT1A receptors are compatible with selective 5-HT serotonin reuptake inhibitors (SSRIs) and antagonists of 5-HT3 and 5-HT1A receptors, respectively. L-17 robustly increased c-Fos immunoreactivity in the amygdala and decreased it in the hippocampus. L-17 dose-dependently inhibited 5-HT neurons of the dorsal raphe nucleus; this inhibition was partially reversed by the 5-HT1A antagonist WAY100135. We suggest that L-17 is a potent 5-HT reuptake inhibitor and partial antagonist of 5-HT3 and 5-HT1A receptors; the effects of L-17 on amygdaloid and hippocampal excitability might be mediated via 5-HT, and putatively mediate the antidepressant-like effects of this drug. Since L-17 also possesses neuro- and cardioprotective properties, it can be beneficial in PSD and PMID. Combined in silico predictions with ex vivo neurochemical and in vivo electrophysiological assessments might be a useful strategy for early assessment of the efficacy and neural mechanism of action of novel CNS drugs.

Author(s):  
Alexey Sarapultsev ◽  
Pavel Vassiliev ◽  
Daniil Grinchii ◽  
Alexander Kiss ◽  
Mojmír Mach ◽  
...  

L-17 is a thiadiazine derivative with putative anti-inflammatory, neuroprotective, and antidepressant-like properties. In this study, we applied combined in silico, ex vivo, and in vivo electrophysiology techniques to reveal the potential mechanism of action of L-17. PASS 10.4 Professional Extended software suggested that L-17 might have pro-cognitive, antidepressant, and antipsychotic effects. Docking energy assessment with AutoDockVina predicted that the binding affinities of L-17 to the serotonin transporter (SERT) and serotonin receptors 3 and 1A (5-HT3 and 5-HT1A) receptors are compatible to the selective serotonin reuptake inhibitor (SSRI) fluoxetine and selective antagonists of 5-HT3 and 5-HT1A receptors, granisetron and WAY100135, respectively. Acute pre-treatment with L-17 robustly increased c-Fos immunoreactivity in the amygdala (central nucleus), suggesting increased neuronal excitability in this brain area after L-17 administration. Acute L-17 also dose-dependently inhibited of 5-HT neurons of the dorsal raphe nucleus (DRN). This inhibition was partially reversed by subsequent administration of WAY100135, suggesting the involvement of extracellular 5-HT. Based on in silico predictions, c-Fos immunohistochemistry, and in vivo electrophysiology, we suggest that L-17 is a potent 5-HT reuptake inhibitor and/or partial 5-HT1A receptor antagonist. Thus, L-17 might be a representative of a new class of antidepressant drugs. Since L-17 also possesses neuro- and cardio-protective properties, it can be useful in post-stroke and post-myocardial infarction (MI) depression. In general, combined in silico predictions and ex vivo neurochemical and in vivo electrophysiological assessment might be a useful strategy for early preclinical assessment of the affectivity and neural mechanism in action of the novel CNS drugs.


2021 ◽  
Vol 7 (6) ◽  
pp. 439
Author(s):  
Tecla Ciociola ◽  
Walter Magliani ◽  
Tiziano De Simone ◽  
Thelma A. Pertinhez ◽  
Stefania Conti ◽  
...  

It has been previously demonstrated that synthetic antibody-derived peptides could exert a significant activity in vitro, ex vivo, and/or in vivo against microorganisms and viruses, as well as immunomodulatory effects through the activation of immune cells. Based on the sequence of previously described antibody-derived peptides with recognized antifungal activity, an in silico analysis was conducted to identify novel antifungal candidates. The present study analyzed the candidacidal and structural properties of in silico designed peptides (ISDPs) derived by amino acid substitutions of the parent peptide KKVTMTCSAS. ISDPs proved to be more active in vitro than the parent peptide and all proved to be therapeutic in Galleria mellonella candidal infection, without showing toxic effects on mammalian cells. ISDPs were studied by circular dichroism spectroscopy, demonstrating different structural organization. These results allowed to validate a consensus sequence for the parent peptide KKVTMTCSAS that may be useful in the development of novel antimicrobial molecules.


2021 ◽  
pp. 088391152199784
Author(s):  
Loveleen Kaur ◽  
Ajay Kumar Thakur ◽  
Pradeep Kumar ◽  
Inderbir Singh

Present study was aimed to synthesize and characterize Chitosan-Catechol conjugates and to design and develop mucoadhesive pellets loaded with lafutidine. SEM images indicated the presence of fibrous structures responsible for enhanced mucoadhesive potential of Chitosan-Catechol conjugates. Thermodynamic stability and amorphous nature of conjugates was confirmed by DSC and XRD studies respectively. Rheological studies were used to evaluate polymer mucin interactions wherein strong interactions between Chitosan-Catechol conjugate and mucin was observed in comparison to pristine chitosan and mucin. The mucoadhesion potential of Chitosan-Catechol (Cht-C) versus Chitosan (Cht) was assessed in silico using molecular mechanics simulations and the results obtained were compared with the in vitro and ex vivo results. Cht-C/mucin demonstrated much higher energy stabilization (∆E ≈ −65 kcal/mol) as compared to Cht/mucin molecular complex. Lafutidine-loaded pellets were prepared from Chitosan (LPC) and Chitosan-Catechol conjugates (LPCC) and were evaluated for various physical properties viz. flow, circularity, roundness, friability, drug content, particle size and percent mucoadhesion. In vitro drug release studies on LPC and LPCC pellets were performed for computing t50%, t90% and mean dissolution time. The values of release exponent from Korsmeyer-Peppas model was reported to be 0.443 and 0.759 for LPC and LPCC pellets suggesting Fickian and non-Fickian mechanism representing drug release, respectively. In vivo results depicted significant controlled release and enhanced residence of the drug after being released from the chitosan-catechol coated pellets. Chitosan-Catechol conjugates were found to be a promising biooadhesive polymer for the development of various mucoadhesive formulations.


Author(s):  
Naresh Damuka ◽  
Miranda Orr ◽  
Paul W. Czoty ◽  
Jeffrey L. Weiner ◽  
Thomas J. Martin ◽  
...  

AbstractMicrotubules (MTs) are structural units in the cytoskeleton. In brain cells they are responsible for axonal transport, information processing, and signaling mechanisms. Proper function of these processes is critical for healthy brain functions. Alcohol and substance use disorders (AUD/SUDs) affects the function and organization of MTs in the brain, making them a potential neuroimaging marker to study the resulting impairment of overall neurobehavioral and cognitive processes. Our lab reported the first brain-penetrant MT-tracking Positron Emission Tomography (PET) ligand [11C]MPC-6827 and demonstrated its in vivo utility in rodents and non-human primates. To further explore the in vivo imaging potential of [11C]MPC-6827, we need to investigate its mechanism of action. Here, we report preliminary in vitro binding results in SH-SY5Y neuroblastoma cells exposed to ethanol (EtOH) or cocaine in combination with multiple agents that alter MT stability. EtOH and cocaine treatments increased MT stability and decreased free tubulin monomers. Our initial cell-binding assay demonstrated that [11C]MPC-6827 may have high affinity to free/unbound tubulin units. Consistent with this mechanism of action, we observed lower [11C]MPC-6827 uptake in SH-SY5Y cells after EtOH and cocaine treatments (e.g., fewer free tubulin units). We are currently performing in vivo PET imaging and ex vivo biodistribution studies in rodent and nonhuman primate models of AUD and SUDs and Alzheimer's disease.


Parasitologia ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 50-60
Author(s):  
Veronica Rodriguez Fernandez ◽  
Giovanni Casini ◽  
Fabrizio Bruschi

Ocular toxoplasmosis (OT) is caused by the parasite Toxoplasma gondii and affects many individuals throughout the world. Infection may occur through congenital or acquired routes. The parasites enter the blood circulation and reach both the retina and the retinal pigment epithelium, where they may cause cell damage and cell death. Different routes of access are used by T. gondii to reach the retina through the retinal endothelium: by transmission inside leukocytes, as free parasites through a paracellular route, or after endothelial cell infection. A main feature of OT is the induction of an important inflammatory state, and the course of infection has been shown to be influenced by the host immunogenetics. On the other hand, there is evidence that the T. gondii phenotype also has an impact on the distribution of the pathology in different areas. Although considerable knowledge has been acquired on OT, a deeper knowledge of its mechanisms is necessary to provide new, more targeted treatment strategies. In particular, in addition to in vitro and in vivo experimental models, organotypic, ex vivo retinal explants may be useful in this direction.


2021 ◽  
Author(s):  
Emma L Brown ◽  
Thierry L Lefebvre ◽  
Paul W Sweeney ◽  
Bernadette Stolz ◽  
Janek Gröhl ◽  
...  

Mesoscopic photoacoustic imaging (PAI) enables non-invasive visualisation of tumour vasculature and has the potential to assess prognosis and therapeutic response. Currently, evaluating vasculature using mesoscopic PAI involves visual or semi-quantitative 2D measurements, which fail to capture 3D vessel network complexity, and lack robust ground truths for assessment of segmentation accuracy. Here, we developed an in silico, phantom, in vivo, and ex vivo-validated end-to-end framework to quantify 3D vascular networks captured using mesoscopic PAI. We applied our framework to evaluate the capacity of rule-based and machine learning-based segmentation methods, with or without vesselness image filtering, to preserve blood volume and network structure by employing topological data analysis. We first assessed segmentation performance against ground truth data of in silico synthetic vasculatures and a photoacoustic string phantom. Our results indicate that learning-based segmentation best preserves vessel diameter and blood volume at depth, while rule-based segmentation with vesselness image filtering accurately preserved network structure in superficial vessels. Next, we applied our framework to breast cancer patient-derived xenografts (PDXs), with corresponding ex vivo immunohistochemistry. We demonstrated that the above segmentation methods can reliably delineate the vasculature of 2 breast PDX models from mesoscopic PA images. Our results underscore the importance of evaluating the choice of segmentation method when applying mesoscopic PAI as a tool to evaluate vascular networks in vivo.


2021 ◽  
Vol 14 ◽  
Author(s):  
Achira Roy ◽  
Victor Z. Han ◽  
Angela M. Bard ◽  
Devin T. Wehle ◽  
Stephen E. P. Smith ◽  
...  

Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy.


2016 ◽  
Vol 33 (12) ◽  
pp. 3057-3071 ◽  
Author(s):  
Mershen Govender ◽  
Yahya E. Choonara ◽  
Sandy van Vuuren ◽  
Pradeep Kumar ◽  
Lisa C. du Toit ◽  
...  
Keyword(s):  

2018 ◽  
Vol 29 (9) ◽  
pp. 3778-3795
Author(s):  
Alexandre Pons-Bennaceur ◽  
Vera Tsintsadze ◽  
Thi-thien Bui ◽  
Timur Tsintsadze ◽  
Marat Minlebaev ◽  
...  

Abstract Epilepsy is a multifactorial disorder associated with neuronal hyperexcitability that affects more than 1% of the human population. It has long been known that adenosine can reduce seizure generation in animal models of epilepsies. However, in addition to various side effects, the instability of adenosine has precluded its use as an anticonvulsant treatment. Here we report that a stable analogue of diadenosine-tetraphosphate: AppCH2ppA effectively suppresses spontaneous epileptiform activity in vitro and in vivo in a Tuberous Sclerosis Complex (TSC) mouse model (Tsc1+/−), and in postsurgery cortical samples from TSC human patients. These effects are mediated by enhanced adenosine signaling in the cortex post local neuronal adenosine release. The released adenosine induces A1 receptor-dependent activation of potassium channels thereby reducing neuronal excitability, temporal summation, and hypersynchronicity. AppCH2ppA does not cause any disturbances of the main vital autonomous functions of Tsc1+/− mice in vivo. Therefore, we propose this compound to be a potent new candidate for adenosine-related treatment strategies to suppress intractable epilepsies.


Sign in / Sign up

Export Citation Format

Share Document