scholarly journals Inducing Energetic Switching Using Klotho Improves Vascular Smooth Muscle Cell Phenotype

2021 ◽  
Vol 23 (1) ◽  
pp. 217
Author(s):  
Craig K. Docherty ◽  
Anastasiya Strembitska ◽  
Christa P. Baker ◽  
Fiona F. Schmidt ◽  
Kieran Reay ◽  
...  

The cardiovascular disease of atherosclerosis is characterised by aged vascular smooth muscle cells and compromised cell survival. Analysis of human and murine plaques highlights markers of DNA damage such as p53, Ataxia telangiectasia mutated (ATM), and defects in mitochondrial oxidative metabolism as significant observations. The antiageing protein Klotho could prolong VSMC survival in the atherosclerotic plaque and delay the consequences of plaque rupture by improving VSMC phenotype to delay heart attacks and stroke. Comparing wild-type VSMCs from an ApoE model of atherosclerosis with a flox’d Pink1 knockout of inducible mitochondrial dysfunction we show WT Pink1 is essential for normal cell viability, while Klotho mediates energetic switching which may preserve cell survival. Methods: Wild-type ApoE VSMCs were screened to identify potential drug candidates that could improve longevity without inducing cytotoxicity. The central regulator of cell metabolism AMP Kinase was used as a readout of energy homeostasis. Functional energetic switching between oxidative and glycolytic metabolism was assessed using XF24 technology. Live cell imaging was then used as a functional readout for the WT drug response, compared with Pink1 (phosphatase-and-tensin-homolog (PTEN)-induced kinase-1) knockout cells. Results: Candidate drugs were assessed to induce pACC, pAMPK, and pLKB1 before selecting Klotho for its improved ability to perform energetic switching. Klotho mediated an inverse dose-dependent effect and was able to switch between oxidative and glycolytic metabolism. Klotho mediated improved glycolytic energetics in wild-type cells which were not present in Pink1 knockout cells that model mitochondrial dysfunction. Klotho improved WT cell survival and migration, increasing proliferation and decreasing necrosis independent of effects on apoptosis. Conclusions: Klotho plays an important role in VSMC energetics which requires Pink1 to mediate energetic switching between oxidative and glycolytic metabolism. Klotho improved VSMC phenotype and, if targeted to the plaque early in the disease, could be a useful strategy to delay the effects of plaque ageing and improve VSMC survival.

2021 ◽  
Vol 22 (18) ◽  
pp. 9993
Author(s):  
Craig K. Docherty ◽  
Jordan Bresciani ◽  
Andy Carswell ◽  
Amrita Chanderseka ◽  
Elaine Friel ◽  
...  

DNA damage and mitochondrial dysfunction are defining characteristics of aged vascular smooth muscle cells (VSMCs) found in atherosclerosis. Pink1 kinase regulates mitochondrial homeostasis and recycles dysfunctional organelles critical for maintaining energetic homeostasis. Here, we generated a new vascular-specific Pink1 knockout and assessed its effect on VSMC-dependent atherogenesis in vivo and VSMC energetic metabolism in vitro. A smooth muscle cell-specific and MHC-Cre-inducible flox’d Pink1f/f kinase knockout was made on a ROSA26+/0 and ApoE−/− C57Blk6/J background. Mice were high fat fed for 10 weeks and vasculature assessed for physiological and pathogical changes. Mitochondrial respiratory activity was then assessed in wild-type and knockout animals vessels and isolated cells for their reliance on oxidative and glycolytic metabolism. During atherogenesis, we find that Pink1 knockout affects development of plaque quality rather than plaque quantity by decreasing VSMC and extracellular matrix components, collagen and elastin. Pink1 protein is important in the wild-type VSMC response to metabolic stress and induced a compensatory increase in hexokinase II, which catalyses the first irreversible step in glycolysis. Pink1 appears to play an important role in VSMC energetics during atherogenesis but may also provide insight into the understanding of mitochondrial energetics in other diseases where the regulation of energetic switching between oxidative and glycolytic metabolism is found to be important.


2011 ◽  
Vol 178 (2) ◽  
pp. 924-934 ◽  
Author(s):  
Jan H. von der Thüsen ◽  
Keren S. Borensztajn ◽  
Silvia Moimas ◽  
Sandra van Heiningen ◽  
Peter Teeling ◽  
...  

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Megan F Burke ◽  
Caitlin O’Rourke ◽  
Trejeeve Martyn ◽  
Hannah R Shakartzi ◽  
Timothy E Thayer ◽  
...  

Background: Matrix Gla protein (MGP) is an extracellular matrix protein that inhibits bone morphogenetic protein (BMP) signaling in vitro. MGP deficiency induces vascular calcification associated with osteogenic transdifferentiation of endothelial cells (via endothelial-mesenchymal transition, EndMT) and vascular smooth muscle cells (VSMCs). We previously reported that treatment with two pharmacologic inhibitors of BMP signaling reduced aortic calcification in MGP-/- mice. We hypothesized that BMP signaling is essential for EndMT and VSMC osteogenic transdifferentiation induced by MGP deficiency. Methods and Results: Aortic levels of mRNAs encoding markers of osteogenesis (Runx2 and osteopontin) and EndMT (nanog, Sox2, and Oct3/4) were greater in MGP-/- than in wild-type mice (P<0.01 for all). Aortic expression of markers of VSMC differentiation (α-smooth muscle actin, transgelin, and calponin) was less in MGP-/- than in wild-type mice (P<0.001 for all). Treatment of MGP-/- mice with the BMP signaling inhibitor, LDN-193189, reduced expression of both osteogenic and EndMT markers (P<0.05 for all) but did not prevent VSMC de-differentiation. Depletion of MGP in cultured wild-type VSMCs with siRNA specific for MGP (siMGP) was associated with a 30-40% reduction in levels of mRNAs encoding markers of VSMC differentiation (P<0.05 for all), an effect that was not prevented by LDN-193189. Incubation in phosphate-containing media induced greater calcification in siMGP-treated VSMCs than in cells treated with control siRNA (P<0.0001). Treatment with LDN-193189 reduced calcification in siMGP-treated VSMCs (50%, P=0.0003). Conversely, infection of MGP-/- VSMCs with adenovirus specifying MGP increased expression of markers of VSMC differentiation by 60-80% (P<0.01 for all) and decreased calcification by 74% (P=0.03). Conclusions: Inhibition of BMP signaling suppresses osteogenic and EndMT gene programs in MGP-/- mice and reduces calcification of siMGP-treated VSMCs. However, MGP deficiency induces VSMC de-differentiation via a BMP-independent mechanism. These findings suggest that the processes underlying vascular calcification in MGP deficiency are mediated by both BMP signaling-dependent and -independent mechanisms.


Sign in / Sign up

Export Citation Format

Share Document