scholarly journals A Novel Method for Router-to-AS Mapping Based on Graph Community Discovery

Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 87 ◽  
Author(s):  
Hangyu Hu ◽  
Weiyi Liu ◽  
Gaolei Fei ◽  
Song Yang ◽  
Guangmin Hu

The last decades have witnessed the progressive development of research on Internet topology at the router or autonomous systems (AS) level. Routers are essential components of ASes, which dominate their behaviors. It is important to identify the affiliation between routers and ASes because this contributes to a deeper understanding of the topology. However, the existing methods that assign a router to an AS, based on the origin AS of its IP addresses do not make full use of the information during the network interaction procedure. In this paper, we propose a novel method to assign routers to their owners’ AS, based on community discovery. First, we use the initial AS information along with router-pair similarities to construct a weighted router level graph; secondly, with the large amount of graph data (more than 2M nodes and 19M edges) from the CAIDA ITDK project, we propose a fast hierarchy clustering algorithm with time and space complexity, which are both linear for graph community discovery. Finally, router-to-AS mapping is completed, based on these AS communities. Experimental results show that the effectiveness and robustness of the proposed method. Combining with AS communities, our method could have the higher accuracy rate reaching to 82.62% for Routers-to-AS mapping, while the best accuracy of prior works is plateaued at 65.44%.

2021 ◽  
Vol 13 (9) ◽  
pp. 4648
Author(s):  
Rana Muhammad Adnan ◽  
Kulwinder Singh Parmar ◽  
Salim Heddam ◽  
Shamsuddin Shahid ◽  
Ozgur Kisi

The accurate estimation of suspended sediments (SSs) carries significance in determining the volume of dam storage, river carrying capacity, pollution susceptibility, soil erosion potential, aquatic ecological impacts, and the design and operation of hydraulic structures. The presented study proposes a new method for accurately estimating daily SSs using antecedent discharge and sediment information. The novel method is developed by hybridizing the multivariate adaptive regression spline (MARS) and the Kmeans clustering algorithm (MARS–KM). The proposed method’s efficacy is established by comparing its performance with the adaptive neuro-fuzzy system (ANFIS), MARS, and M5 tree (M5Tree) models in predicting SSs at two stations situated on the Yangtze River of China, according to the three assessment measurements, RMSE, MAE, and NSE. Two modeling scenarios are employed; data are divided into 50–50% for model training and testing in the first scenario, and the training and test data sets are swapped in the second scenario. In Guangyuan Station, the MARS–KM showed a performance improvement compared to ANFIS, MARS, and M5Tree methods in term of RMSE by 39%, 30%, and 18% in the first scenario and by 24%, 22%, and 8% in the second scenario, respectively, while the improvement in RMSE of ANFIS, MARS, and M5Tree was 34%, 26%, and 27% in the first scenario and 7%, 16%, and 6% in the second scenario, respectively, at Beibei Station. Additionally, the MARS–KM models provided much more satisfactory estimates using only discharge values as inputs.


2019 ◽  
Author(s):  
Lin Fei ◽  
Yang Yang ◽  
Wang Shihua ◽  
Xu Yudi ◽  
Ma Hong

Unreasonable public bicycle dispatching area division seriously affects the operational efficiency of the public bicycle system. To solve this problem, this paper innovatively proposes an improved community discovery algorithm based on multi-objective optimization (CDoMO). The data set is preprocessed into a lease/return relationship, thereby it calculated a similarity matrix, and the community discovery algorithm Fast Unfolding is executed on the matrix to obtain a scheduling scheme. For the results obtained by the algorithm, the workload indicators (scheduled distance, number of sites, and number of scheduling bicycles) should be adjusted to maximize the overall benefits, and the entire process is continuously optimized by a multi-objective optimization algorithm NSGA2. The experimental results show that compared with the clustering algorithm and the community discovery algorithm, the method can shorten the estimated scheduling distance by 20%-50%, and can effectively balance the scheduling workload of each area. The method can provide theoretical support for the public bicycle dispatching department, and improve the efficiency of public bicycle dispatching system.


2021 ◽  
Vol 10 (4) ◽  
pp. 2212-2222
Author(s):  
Alvincent E. Danganan ◽  
Edjie Malonzo De Los Reyes

Improved multi-cluster overlapping k-means extension (IMCOKE) uses median absolute deviation (MAD) in detecting outliers in datasets makes the algorithm more effective with regards to overlapping clustering. Nevertheless, analysis of the applied MAD positioning was not considered. In this paper, the incorporation of MAD used to detect outliers in the datasets was analyzed to determine the appropriate position in identifying the outlier before applying it in the clustering application. And the assumption of the study was the size of the cluster and cluster that are close to each other can led to a higher runtime performance in terms of overlapping clusters. Therefore, additional parameters such as radius of clusters and distance between clusters are added measurements in the algorithm procedures. Evaluation was done through experimentations using synthetic and real datasets. The performance of the eHMCOKE was evaluated via F1-measure criterion, speed and percentage of improvement. Evaluation results revealed that the eHMCOKE takes less time to discover overlap clusters with an improvement rate of 22% and achieved the best performance of 91.5% accuracy rate via F1-measure in identifying overlapping clusters over the IMCOKE algorithm. These results proved that the eHMCOKE significantly outruns the IMCOKE algorithm on mosts of the test conducted.


PLoS ONE ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. e0146352 ◽  
Author(s):  
Daniel M. de Brito ◽  
Vinicius Maracaja-Coutinho ◽  
Savio T. de Farias ◽  
Leonardo V. Batista ◽  
Thaís G. do Rêgo

Author(s):  
Mohammed Mehdi Saleh ◽  
Ruslan Saad Abdulrahman ◽  
Aymen Jaber Salman

Wireless sensor networks are regarded as the most essential components of contemporary technologies since they are in charge of sensing and monitoring processes, which are the primary functions of these technologies. Because these nodes rely on an unchangeable battery and are randomly deployed in the environment, node energy management is the most essential issue to consider when designing algorithms to enhance the network's life. Clustering is a wireless sensor network (WSN) routing technique that has been implemented in order to extend network lifetime. Also, it is trendy to increase the energy levels of the node battery by utilizing various energy harvesting techniques in order to extend the network lifetime. In this paper, a new energy-aware clustering algorithm (EHEARA) has been proposed. The proposed algorithm is based on a dynamic clustering function and adopts a solar energy harvesting scheme in order to improve network lifetime. Furthermore, the active-sleep mechanism was used to distribute node activity and balance communication among nodes within clusters and cluster heads with the base station. The proposed algorithm is simulated using matrix laboratory (MATLAB), and the results show that it outperforms the low energy adaptive clustering hierarchy (LEACH), distributed energy efficient clustering (DEEC), and stable election protocol (SEP) algorithms in terms of network lifetime, energy consumption, and network throughput.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0240100
Author(s):  
Khalid Bakhshaliyev ◽  
Mehmet Hadi Gunes

Comprehensive analysis that aims to understand the topology of real-world networks and the development of algorithms that replicate their characteristics has been significant research issues. Although the accuracy of newly developed network protocols or algorithms does not depend on the underlying topology, the performance generally depends on the topology. As a result, network practitioners have concentrated on generating representative synthetic topologies and utilize them to investigate the performance of their design in simulation or emulation environments. Network generators typically represent the Internet topology as a graph composed of point-to-point links. In this study, we discuss the implications of multi-access links on the synthetic network generation and modeling of the networks as bi-partite graphs to represent both subnetworks and routers. We then analyze the characteristics of sampled Internet topology data sets from backbone Autonomous Systems (AS) and observe that in addition to the commonly recognized power-law node degree distribution, the subnetwork size and the router interface distributions often exhibit power-law characteristics. We introduce a SubNetwork Generator (SubNetG) topology generation approach that incorporates the observed measurements to produce bipartite network topologies. In particular, generated topologies capture the 2-mode relation between the layer-2 (i.e., the subnetwork and interface distributions) and the layer-3 (i.e., the degree distribution) that is missing from the current network generators that produce 1-mode graphs. The SubNetG source code and experimental data is available at https://github.com/netml/sonet.


2019 ◽  
Vol 5 ◽  
pp. e224
Author(s):  
Fei Lin ◽  
Yang Yang ◽  
Shihua Wang ◽  
Yudi Xu ◽  
Hong Ma ◽  
...  

Unreasonable public bicycle dispatching area division seriously affects the operational efficiency of the public bicycle system. To solve this problem, this paper innovatively proposes an improved community discovery algorithm based on multi-objective optimization (CDoMO). The data set is preprocessed into a lease/return relationship, thereby it calculated a similarity matrix, and the community discovery algorithm Fast Unfolding is executed on the matrix to obtain a scheduling scheme. For the results obtained by the algorithm, the workload indicators (scheduled distance, number of sites, and number of scheduling bicycles) should be adjusted to maximize the overall benefits, and the entire process is continuously optimized by a multi-objective optimization algorithm NSGA2. The experimental results show that compared with the clustering algorithm and the community discovery algorithm, the method can shorten the estimated scheduling distance by 20%–50%, and can effectively balance the scheduling workload of each area. The method can provide theoretical support for the public bicycle dispatching department, and improve the efficiency of public bicycle dispatching system.


Sign in / Sign up

Export Citation Format

Share Document