scholarly journals Bit from Qubit. A Hypothesis on Wave-Particle Dualism and Fundamental Interactions

Information ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 571
Author(s):  
Leonardo Chiatti

In this article a completely objective decoherence mechanism is hypothesized, operating at the level of the elementary particles of matter. The standard quantum mechanical description is complemented with a phenomenological evolution equation, involving a scalar curvature and an internal time, distinct from the observable time of the laboratory. This equation admits solutions internal to the wave function collapse, and the classical instantons connected to these solutions represent de Sitter micro-spaces identifiable with elementary particles. This result is linked in a natural way to other research programs tending to describe the internal structure of elementary particles by means of de Sitter spaces. Both the possible implications in particle physics and those deriving from the conversion of quantum information (qubits) into classical information (bits) are highlighted.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jochem Hauser ◽  
Walter Dröscher

Abstract This article, the last in a series of three articles, attempts to unravel the underlying physics of recent experiments regarding the contradictory properties of the neutron lifetime that has been a complete riddle for quite some time. So far, none of the advanced theories beyond the  Standard Models (SMs) of particle physics and cosmology have shown sufficient potential to resolve this mystery. We also try to explain the blatant contradiction between the predictions of particle physics and experiments concerning the nature and properties of the (so far undetected) dark matter and dark energy particles. To this end the novel concepts of both negative and hypercomplex matter (giving rise to the concept of matter flavor) are introduced, replacing the field of real numbers by hypercomplex numbers. This extension of the number system in physics leads to both novel internal symmetries requiring new elementary particles – as outlined in Part I and II, and to novel types of matter. Hypercomplex numbers are employed in place of the widely accepted (but never observed) concept of extra space dimensions – and, hence, also to question the corresponding concept of supersymmetry. To corroborate this claim, we report on the latest experimental searches for novel and supersymmetric elementary particles by direct searches at the Large Hadron Collider (LHC) and other colliders as well as numerous other dedicated experiments that all have come up empty handed. The same holds true for the dark matter search at European Council for Nuclear Research (CERN) [CERN Courier Team, “Funky physics at KIT,” in CERN Courier, 2020, p. 11]. In addition, new experiments looking for dark or hidden photons (e.g., FUNK at Karlsruhe Institute of Technology, CAST at CERN, and ALPS at Desy, Hamburg) are discussed that all produced negative results for the existence of the hitherto unseen but nevertheless gravitationally noticeably dark matter. In view of this contradicting outcome, we suggest a four-dimensional Minkowski spacetime, assumed to be a quasi de Sitter space, dS 1,3, complemented by a dual spacetime, denoted by DdS 1,3, in which the dark matter particles that are supposed to be of negative mass reside. This space is endowed with an imaginary time coordinate, −it and an imaginary speed of light, ic. This means that time is considered a complex quantity, but energy m(ic)2 > 0. With this construction visible and dark matter both represent positive energies, and hence gravitation makes no distinction between these two types of matter. As dark matter is supposed to reside in dual space DdS 1,3, it is principally undetectable in our spacetime. That this is evident has been confirmed by numerous astrophysical observations. As the concept of matter flavor may possibly resolve the contradictory experimental results concerning the lifetime of the neutron [J. T. Wilson, “Space based measurement of the neutron lifetime using data from the neutron spectrometer on NASA’s messenger mission,” Phys. Rev. Res., vol. 2, p. 023216, 2020] this fact could be considered as a first experimental hint for the actual existence of hypercomplex matter. In canonical gravity the conversion of electromagnetic into gravity-like fields (as surmised by Faraday and Einstein) should be possible, but not in cosmological gravity (hence these attempts did not succeed), and thus these conversion fields are outside general relativity. In addition, the concept of hypercomplex mass in conjunction with magnetic monopoles emerging from spin ice materials is discussed that may provide the enabling technology for long sought propellantless space propulsion.


1990 ◽  
Vol 05 (08) ◽  
pp. 1575-1595 ◽  
Author(s):  
B.-S. SKAGERSTAM ◽  
A. STERN

We show that the classical and quantum covariant dynamics of spinning particles in flat space in 2+1 dimensions are derived from a pure Wess-Zumino term written on the space of adjoint orbits of the ISO(2, 1) group. Similarly, the dynamics of spinning particles in 2+1 de Sitter [anti-de Sitter] space are derived from a Wess-Zumino term on the space of adjoint orbits of SO(3, 1) [SO(2, 2)]. It is shown that a quantum mechanical description of spin is possible in 2+1 dimensions without introducing explicit spin degrees of freedom, but at the expense of having a noncommutative space-time geometry.


2016 ◽  
pp. 4039-4042
Author(s):  
Viliam Malcher

The interpretation problems of quantum theory are considered. In the formalism of quantum theory the possible states of a system are described by a state vector. The state vector, which will be represented as |ψ> in Dirac notation, is the most general form of the quantum mechanical description. The central problem of the interpretation of quantum theory is to explain the physical significance of the |ψ>. In this paper we have shown that one of the best way to make of interpretation of wave function is to take the wave function as an operator.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Zbigniew Dutkiewicz

AbstractDrug design is an expensive and time-consuming process. Any method that allows reducing the time the costs of the drug development project can have great practical value for the pharmaceutical industry. In structure-based drug design, affinity prediction methods are of great importance. The majority of methods used to predict binding free energy in protein-ligand complexes use molecular mechanics methods. However, many limitations of these methods in describing interactions exist. An attempt to go beyond these limits is the application of quantum-mechanical description for all or only part of the analyzed system. However, the extensive use of quantum mechanical (QM) approaches in drug discovery is still a demanding challenge. This chapter briefly reviews selected methods used to calculate protein-ligand binding affinity applied in virtual screening (VS), rescoring of docked poses, and lead optimization stage, including QM methods based on molecular simulations.


2006 ◽  
Vol 106 (9) ◽  
pp. 2129-2144 ◽  
Author(s):  
Luiz Antônio S. Costa ◽  
Trevor W. Hambley ◽  
Willian R. Rocha ◽  
Wagner B. De Almeida ◽  
Hélio F. Dos Santos

2015 ◽  
Vol 6 ◽  
pp. 1946-1956 ◽  
Author(s):  
Nikolay V Klenov ◽  
Alexey V Kuznetsov ◽  
Igor I Soloviev ◽  
Sergey V Bakurskiy ◽  
Olga V Tikhonova

We present our approach for a consistent, fully quantum mechanical description of the magnetization reversal process in natural and artificial atomic systems by means of short magnetic pulses. In terms of the simplest model of a two-level system with a magnetic moment, we analyze the possibility of a fast magnetization reversal on the picosecond timescale induced by oscillating or short unipolar magnetic pulses. We demonstrate the possibility of selective magnetization reversal of a superconducting flux qubit using a single flux quantum-based pulse and suggest a promising, rapid Λ-scheme for resonant implementation of this process. In addition, the magnetization reversal treatment is fulfilled within the framework of the macroscopic theory of the magnetic moment, which allows for the comparison and explanation of the quantum and classical behavior.


Sign in / Sign up

Export Citation Format

Share Document