scholarly journals Relativistic Effects on Satellite–Ground Two–Way Precise Time Synchronization

Information ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 422
Author(s):  
Yanming Guo ◽  
Yan Bai ◽  
Shuaihe Gao ◽  
Zhibing Pan ◽  
Zibin Han ◽  
...  

An ultrahigh precise clock (space optical clock) will be installed onboard a low-orbit spacecraft (a usual expression for a low-orbit satellite operating on an orbit at an altitude of less than 1000 km) in the future, which will be expected to obtain better time-frequency performance in a microgravity environment, and provide the possible realization of ultrahigh precise long-range time synchronization. The advancement of the microwave two-way time synchronization method can offer an effective solution for developing time-frequency transfer technology. In this study, we focus on a method of precise satellite-ground two-way time synchronization and present their key aspects. For reducing the relativistic effects on two-way precise time synchronization, we propose a high-precision correction method. We show the results of tests using simulated data with fully realistic effects such as atmospheric delays, orbit errors, and earth gravity, and demonstrate the satisfactory performance of the methods. The accuracy of the relativistic error correction method is investigated in terms of the spacecraft attitude error, phase center calibration error (the residual error after calibrating phase center offset), and precise orbit determination (POD) error. The results show that the phase center calibration error and POD error contribute greatly to the residual of relativistic correction, at approximately 0.1~0.3 ps, and time synchronization accuracy better than 0.6 ps can be achieved with our proposed methods. In conclusion, the relativistic error correction method is effective, and the satellite-ground two-way precise time synchronization method yields more accurate results. The results of Beidou two-way time synchronization system can only achieve sub-ns accuracy, while the final accuracy obtained by the methods in this paper can improved to ps-level.

2021 ◽  
Vol 263 ◽  
pp. 105817
Author(s):  
Jie Yang ◽  
Qingquan Liu ◽  
Gaoying Chen ◽  
Xuan Deng ◽  
Li Zhang

2018 ◽  
Vol 11 (9) ◽  
pp. 5167-5180 ◽  
Author(s):  
Kaisa Lakkala ◽  
Antti Arola ◽  
Julian Gröbner ◽  
Sergio Fabian León-Luis ◽  
Alberto Redondas ◽  
...  

Abstract. Non-ideal angular response of a spectroradiometer is a well-known error source of spectral UV measurements and for that reason instrument specific cosine error correction is applied. In this paper, the performance of the cosine error correction method of Brewer spectral UV measurements in use at the Finnish Meteorological Institute (FMI) is studied. Ideally, the correction depends on the actual sky radiation distribution, which can change even during one spectral scan due to rapid changes in cloudiness. The FMI method has been developed to take into account the changes in the ratio of direct to diffuse sky radiation and it derives a correction coefficient for each measured wavelength. Measurements of five Brewers were corrected for the cosine error and the results were compared to the reference travelling spectroradiometer (QASUME). Measurements were performed during the RBCC-E (Regional Brewer Calibration Center – Europe) X Campaign held at El Arenosillo, Huelva (37∘ N, 7∘ W), Spain, in 2015. In addition, results of site audits of FMI's Brewers in Sodankylä (67∘ N, 27∘ E) and Jokioinen (61∘ N, 24∘ E) during 2002–2014 were studied. The results show that the spectral cosine error correction varied between 4 and 14 %. After that the correction was applied to Brewer UV spectra the relative differences between the QASUME and the Brewer diminished even by 10 %. The study confirms that the method, originally developed for measurements at high latitudes, can be used at mid-latitudes as well. The method is applicable to other Brewers as far as the required input parameters, i.e. total ozone, aerosol information, albedo, instrument specific angular response and slit function are available.


Engineering ◽  
2012 ◽  
Vol 04 (11) ◽  
pp. 768-773 ◽  
Author(s):  
Saleh Al-Omar ◽  
Atef Obeidat

2014 ◽  
Vol 11 (3) ◽  
pp. 70-79 ◽  
Author(s):  
Li Ning ◽  
Lin Kanfeng ◽  
Lin Wenliang ◽  
Deng Zhongliang

Sign in / Sign up

Export Citation Format

Share Document