scholarly journals Pavement Distress Detection Methods: A Review

2018 ◽  
Vol 3 (4) ◽  
pp. 58 ◽  
Author(s):  
Antonella Ragnoli ◽  
Maria De Blasiis ◽  
Alessandro Di Benedetto

The road pavement conditions affect safety and comfort, traffic and travel times, vehicles operating cost, and emission levels. In order to optimize the road pavement management and guarantee satisfactory mobility conditions for all road users, the Pavement Management System (PMS) is an effective tool for the road manager. An effective PMS requires the availability of pavement distress data, the possibility of data maintenance and updating, in order to evaluate the best maintenance program. In the last decade, many researches have been focused on pavement distress detection, using a huge variety of technological solutions for both data collection and information extraction and qualification. This paper presents a literature review of data collection systems and processing approach aimed at the pavement condition evaluation. Both commercial solutions and research approaches have been included. The main goal is to draw a framework of the actual existing solutions, considering them from a different point of view in order to identify the most suitable for further research and technical improvement, while also considering the automated and semi-automated emerging technologies. An important attempt is to evaluate the aptness of the data collection and extraction to the type of distress, considering the distress detection, classification, and quantification phases of the procedure.

Author(s):  
Antonella Ragnoli ◽  
Maria Rosaria De Blasiis ◽  
Alessandro Di Benedetto

The road pavement condition affects safety and comfort, traffic and travel times, vehicles operating cost and emission levels. In order to optimize the road pavement management and guarantee satisfactory mobility conditions for all the road users, the Pavement Management System (PMS) is an effective tool for the road manager. An effective PMS requires the availability of pavement distress data, the possibility of data maintenance and updating, in order to evaluate the best maintenance program. In the last decade, many researches have been focused on pavement distress detection, using a huge variety of technological solutions for both data collection and information extraction and qualification. This paper presents a literature review of data collection systems and processing approach aimed at the pavement condition evaluation. Both commercial solutions and research approaches have been included. The main goal is to draw a framework of the actual existing solutions, considering them from a different point of view in order to identify the most suitable for further research and technical improvement, also considering the automated and semi-automated emerging technologies. An important attempt is to evaluate the aptness of the data collection and extraction to the type of distress, considering the distress detection, classification and quantification phases of the procedure.


2015 ◽  
Vol 61 (4) ◽  
pp. 107-126 ◽  
Author(s):  
K. J. Kowalski ◽  
A. J. Brzeziński ◽  
J. B. Król ◽  
P. Radziszewski ◽  
Ł. Szymański

Traffic related noise is currently considered as an environmental pollution. Paper presents results of multidirectional study attempting to serve urban traffic without the need to erect noise barriers interfering urban space. Initial concept of the road expansion included construction of 1000 m of noise barriers dividing city space. Improvement in the acoustic conditions after construction completion is possible due to the applied noise protection measures: vehicle speed limit, smooth of traffic flow, use of road pavement of reduced noise emission and the technical improvement of the tramway.


Author(s):  
Roger E. Smith ◽  
Thomas J. Freeman ◽  
Olga J. Pendleton

Many agencies responsible for managing pavements have adopted pavement management systems (PMS) to help manage their pavement networks more cost-effectively. One of the most costly parts of operating a PMS is collecting condition information, especially pavement distress information. Many agencies have started to contract for pavement distress data collection. Some of the agencies have experienced problems with the data collected by contract. A study for agencies in Washington and Oregon to define the accuracy of data needed by the agencies with an evaluation of certain participating vendors using semiautomated data collection methods is described. Issues about quality control and quality assurance faced by agencies considering contracting for automated data collection also are raised. These issues need additional study to develop appropriate guidelines. The initial set provided is based on discussions with some of the agencies currently contracting for pavement distress data collection.


2020 ◽  
Vol 13 (6) ◽  
pp. 573-580
Author(s):  
Salvatore Cafiso ◽  
A. Di Graziano ◽  
R. Fedele ◽  
V. Marchetta ◽  
F. Praticò

AbstractThe diffusion of smart infrastructures for smart cities provides new opportunities for the improvement of both road infrastructure monitoring and maintenance management.Often pavement management is based on the periodic assessment of the elastic modulus of the bound layers (i.e., asphalt concrete layers) by means of traditional systems, such as Ground Penetrating Radar (GPR) and Falling Weight Deflectometer (FWD). Even if these methods are reliable, well-known, and widespread, they are quite complex, expensive, and are not able to provide updated information about the evolving structural health condition of the road pavement. Hence, more advanced, effective, and economical monitoring systems can be used to solve the problems mentioned above.Consequently, the main objective of the study presented in this paper is to present and apply an innovative solution that can be used to make smarter the road pavement monitoring. In more detail, an innovative Non-Destructive Test (NDT)-based sensing unit was used to gather the vibro-acoustic signatures of road pavements with different deterioration levels (e.g. with and without fatigue cracks) of an urban road. Meaningful features were extracted from the aforementioned acoustic signature and the correlation with the elastic modulus defined using GPR and FWD data was investigated.Results show that some of the features have a good correlation with the elastic moduli of the road section under investigation. Consequently, the innovative solution could be used to evaluate the variability of elastic modulus of the asphalt concrete layers, and to monitor with continuity the deterioration of road pavements under the traffic loads.


Author(s):  
Przemysław Rokitowski ◽  
Marcin Grygierek

Abstract Moisture inside the construction of road pavements is the problem for road engineers all around the world. This issue is mentioned in many European or the US papers and studies, but still it needs to be developed. From the road engineers’ point of view, very important for solving above problems are the studies on the influence of water and moisture inside the construction of road pavement during deflection measurements using Falling Weight Deflectometer (FWD). The paper raises this issue by showing a short review of Polish and foreign literature and presenting the first step of research work at the test site on Voivodeship Road 933 in Poland.


2019 ◽  
Vol 11 (8) ◽  
pp. 2234 ◽  
Author(s):  
Konstantinos Mantalovas ◽  
Gaetano Di Mino

The transition of the road engineering industry to a circular way of doing business requires more efficient and sustainable resources, energy, and waste management. The rates in which reclaimed asphalt is being recycled or reused in the asphalt mixture production process constitutes a crucial parameter in this transition. This paper aims at establishing a further step towards the combined circularity and sustainability of asphalt pavements, by introducing a framework for quantifying their Material Circularity Index. The framework is based on the methodology proposed by the Ellen MacArthur Foundation and accordingly tailored for the context of asphalt pavements. This study, thus, attempts to provide a thorough analysis of the Reclaimed Asphalt’s recycling rates and trends on a European scale and to identify whether the efficiency of the current recycling practices is adequate or not. Moreover, a case study has been undertaken in order to quantify the Material Circularity index of the asphalt pavements forming Italy’s motorway network, following the proposed framework. For representative and accuracy reasons, the Material Circularity index of wearing, binder, and base courses has been calculated separately, and the results interestingly indicate that the base course exhibits the highest rates of circularity.


Author(s):  
A. Miraliakbari ◽  
S. Sok ◽  
Y. O. Ouma ◽  
M. Hahn

With the increasing demand for the digital survey and acquisition of road pavement conditions, there is also the parallel growing need for the development of automated techniques for the analysis and evaluation of the actual road conditions. This is due in part to the resulting large volumes of road pavement data captured through digital surveys, and also to the requirements for rapid data processing and evaluations. In this study, the Canon 5D Mark II RGB camera with a resolution of 21 megapixels is used for the road pavement condition mapping. Even though many imaging and mapping sensors are available, the development of automated pavement distress detection, recognition and extraction systems for pavement condition is still a challenge. In order to detect and extract pavement cracks, a comparative evaluation of kernel-based segmentation methods comprising line filtering (LF), local binary pattern (LBP) and high-pass filtering (HPF) is carried out. While the LF and LBP methods are based on the principle of rotation-invariance for pattern matching, the HPF applies the same principle for filtering, but with a rotational invariant matrix. With respect to the processing speeds, HPF is fastest due to the fact that it is based on a single kernel, as compared to LF and LBP which are based on several kernels. Experiments with 20 sample images which contain linear, block and alligator cracks are carried out. On an average a completeness of distress extraction with values of 81.2%, 76.2% and 81.1% have been found for LF, HPF and LBP respectively.


2019 ◽  
Vol 15 (1) ◽  
pp. 30-38
Author(s):  
Antons Patlins ◽  
Andrii Hnatov ◽  
Shchasiana Arhun ◽  
Hanna Hnatova ◽  
Vasiliy Migal

AbstractThis paper presents a new approach to the creation of innovative roads having sustainable energy efficient road pavement as their basis. It is a new type of intelligent roads that is able to service itself and provide power, i.e. it is also a renewable source of electricity. It is planned to use the studies on the PV panels in sustainable energy efficient road pavement to determine their load parameters. The work used the methods of mathematical analysis and theoretical electrophysics to carry out the studies on load characteristics of various types of silicon PV panels in order to define the most effective panels from the point of view of generated electrical energy load resistance values. The analysis of the obtained results of the experimental research has shown that in order to make the operation of PV panels of series FS-100M and FS-110P most efficient, their load must be maintained within 3–3.5 Ω range. If load resistance exceeds the specified limits, the work of PV panels of this series will be ineffective. The road having a sustainable energy efficient road pavement is able to track road conditions, traffic, weather conditions and react quickly to their changes. It is shown how road markings can change dependance on road conditions.


Author(s):  
A. Miraliakbari ◽  
S. Sok ◽  
Y. O. Ouma ◽  
M. Hahn

With the increasing demand for the digital survey and acquisition of road pavement conditions, there is also the parallel growing need for the development of automated techniques for the analysis and evaluation of the actual road conditions. This is due in part to the resulting large volumes of road pavement data captured through digital surveys, and also to the requirements for rapid data processing and evaluations. In this study, the Canon 5D Mark II RGB camera with a resolution of 21 megapixels is used for the road pavement condition mapping. Even though many imaging and mapping sensors are available, the development of automated pavement distress detection, recognition and extraction systems for pavement condition is still a challenge. In order to detect and extract pavement cracks, a comparative evaluation of kernel-based segmentation methods comprising line filtering (LF), local binary pattern (LBP) and high-pass filtering (HPF) is carried out. While the LF and LBP methods are based on the principle of rotation-invariance for pattern matching, the HPF applies the same principle for filtering, but with a rotational invariant matrix. With respect to the processing speeds, HPF is fastest due to the fact that it is based on a single kernel, as compared to LF and LBP which are based on several kernels. Experiments with 20 sample images which contain linear, block and alligator cracks are carried out. On an average a completeness of distress extraction with values of 81.2%, 76.2% and 81.1% have been found for LF, HPF and LBP respectively.


Sign in / Sign up

Export Citation Format

Share Document