scholarly journals Wing Geometric Morphometrics of Workers and Drones and Single Nucleotide Polymorphisms Provide Similar Genetic Structure in the Iberian Honey Bee (Apis mellifera iberiensis)

Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 89 ◽  
Author(s):  
Dora Henriques ◽  
Julio Chávez-Galarza ◽  
Juliana S. G. Teixeira ◽  
Helena Ferreira ◽  
Cátia J. Neves ◽  
...  

Wing geometric morphometrics has been applied to honey bees (Apis mellifera) in identification of evolutionary lineages or subspecies and, to a lesser extent, in assessing genetic structure within subspecies. Due to bias in the production of sterile females (workers) in a colony, most studies have used workers leaving the males (drones) as a neglected group. However, considering their importance as reproductive individuals, the use of drones should be incorporated in these analyses in order to better understand diversity patterns and underlying evolutionary processes. Here, we assessed the usefulness of drone wings, as well as the power of wing geometric morphometrics, in capturing the signature of complex evolutionary processes by examining wing shape data, integrated with geographical information, from 711 colonies sampled across the entire distributional range of Apis mellifera iberiensis in Iberia. We compared the genetic patterns reconstructed from spatially-explicit shape variation extracted from wings of both sexes with that previously reported using 383 genome-wide SNPs (single nucleotide polymorphisms). Our results indicate that the spatial structure retrieved from wings of drones and workers was similar (r = 0.93) and congruent with that inferred from SNPs (r = 0.90 for drones; r = 0.87 for workers), corroborating the clinal pattern that has been described for A. m. iberiensis using other genetic markers. In addition to showing that drone wings carry valuable genetic information, this study highlights the capability of wing geometric morphometrics in capturing complex genetic patterns, offering a reliable and low-cost alternative for preliminary estimation of population structure.

2019 ◽  
Author(s):  
James Worth ◽  
Luxian Liu ◽  
Nobuhiro Tomaru

This study reports the whole chloroplast genome of Fagus crenata (subgenus Fagus), a foundation tree species of Japanese temperate forests. The genome was a total of 158,247 bp in length containing 111 genes. Comparison with the only other published Fagus chloroplast genome, F. engeleriana (subgenus Engleriana) shows that the genomes are relatively conserved with no inversions or rearrangements observed between them and differing by 311 single nucleotide polymorphisms. The six most variable regions between the two genomes were the psbK-psbI, trnG-psbfM, trnV, rpl32, ndhD-psaC and ndhI-ndh regions. These highly variable chloroplast regions and the identification of 42 variable chloroplast SSRs found to be shared between the two species will provide useful genetic resources for studies of the inter- and intra-specific genetic structure and diversity of this important northern hemisphere tree genus.


2013 ◽  
Vol 22 (23) ◽  
pp. 5890-5907 ◽  
Author(s):  
Julio Chávez-Galarza ◽  
Dora Henriques ◽  
J. Spencer Johnston ◽  
João C. Azevedo ◽  
John C. Patton ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0220981 ◽  
Author(s):  
Hiroto Yamashita ◽  
Hideyuki Katai ◽  
Lina Kawaguchi ◽  
Atsushi J. Nagano ◽  
Yoriyuki Nakamura ◽  
...  

2019 ◽  
Author(s):  
James Worth ◽  
Luxian Liu ◽  
Nobuhiro Tomaru

This study reports the whole chloroplast genome of Fagus crenata (subgenus Fagus), a foundation tree species of Japanese temperate forests. The genome was a total of 158,247 bp in length containing 111 genes. Comparison with the only other published Fagus chloroplast genome, F. engeleriana (subgenus Engleriana) shows that the genomes are relatively conserved with no inversions or rearrangements observed between them and differing by 311 single nucleotide polymorphisms. The six most variable regions between the two genomes were the psbK-psbI, trnG-psbfM, trnV, rpl32, ndhD-psaC and ndhI-ndh regions. These highly variable chloroplast regions and the identification of 42 variable chloroplast SSRs found to be shared between the two species will provide useful genetic resources for studies of the inter- and intra-specific genetic structure and diversity of this important northern hemisphere tree genus.


2010 ◽  
Vol 34 (8) ◽  
pp. S75-S75
Author(s):  
Weifeng Zhu ◽  
Zhuoqi Liu ◽  
Daya Luo ◽  
Xinyao Wu ◽  
Fusheng Wan

Sign in / Sign up

Export Citation Format

Share Document