scholarly journals Characterizing New Wintering Sites for Monarch Butterfly Colonies in Sierra Nevada, Mexico

Insects ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 384
Author(s):  
Ramiro Pérez-Miranda ◽  
Víctor Javier Arriola-Padilla ◽  
Martín Enrique Romero-Sanchez

Every year, Danaus plexippus (Linnaeus, 1758) travels to hibernate in oyamel fir forests located between the limits of the states of Michoacán and Mexico in Mexico. Climate change and anthropogenic actions are diminishing oyamel fir forests in Mexico, putting pressure on the habitats of monarch butterflies. In the last decade, new colonies outside their usual range have been predicted through modeling and reported by the National Commission on Protected Areas of Mexico. The objectives of the study were to recover information on the historical and new hibernation sites, reported or modeled, from different literature sources. We also aimed to perform a bioclimatic and forest biometric characterization of new monarch butterfly colonies located in Sierra Nevada in Mexico to provide information to aid in conservation strategies for the monarch butterfly population. We conducted field trips to georeference the colonies at sites located in the Atlautla municipality in Mexico State. Climatic, topographic, and forest biometric variables were used to characterize the sites physically. It was found that the butterfly’s roosts occurred at a higher elevation than those recorded by other sources. The locations where the monarch’s colonies were established, in the east of Mexico State, provide information relevant to defining and developing policies for their conservation.

Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 567
Author(s):  
Misty Stevenson ◽  
Kalynn L. Hudman ◽  
Alyx Scott ◽  
Kelsey Contreras ◽  
Jeffrey G. Kopachena

Based on surveys of winter roost sites, the eastern migratory population of the monarch butterfly (Danaus plexippus) in North America appears to have declined in the last 20 years and this has prompted the implementation of numerous conservation strategies. However, there is little information on the survivorship of first-generation monarchs in the core area of occupancy in Texas, Oklahoma, and Louisiana where overwinter population recovery begins. The purpose of this study was to determine the survivorship of first-generation eggs to third instars at a site in north Texas and to evaluate host plant arthropods for their effect on survivorship. Survivorship to third instar averaged 13.4% and varied from 11.7% to 15.6% over three years. The host plants harbored 77 arthropod taxa, including 27 predatory taxa. Despite their abundance, neither predator abundance nor predator richness predicted monarch survival. However, host plants upon which monarchs survived often harbored higher numbers of non-predatory arthropod taxa and more individuals of non-predatory taxa. These results suggest that ecological processes may have buffered the effects of predators and improved monarch survival in our study. The creation of diverse functional arthropod communities should be considered for effective monarch conservation, particularly in southern latitudes.


Author(s):  
Misty Stevenson ◽  
Kalynn L. Hudman ◽  
Alyx Scott ◽  
Kelsey Contreras ◽  
Jeffrey G. Kopachena

The eastern migratory population of the monarch butterfly (Danaus plexippus) in North America has declined by over 80% in the last 20 years, prompting the implementation of numerous conservation strategies. However, there is little information on the survivorship of first-generation monarchs in the core area of occupancy in Texas, Oklahoma, and Louisiana where overwinter population recovery begins. The purpose of this study was to determine the survivorship of first-generation eggs to third instars at a site in north Texas and to evaluate host plant arthropods for their effect on survivorship. Survivorship to third instar averaged 13.4% and varied from 11.7% to 15.6% over three years. The host plants harbored 77 arthropod taxa, including 27 predatory taxa. Despite their abundance, neither predator abundance nor predator richness predicted monarch survival. However, host plants upon which monarchs survived often harbored higher numbers of non-predatory arthropod taxa and more individuals of non-predatory taxa. These results indicate that indirect top-down effects improved monarch survival in our study. The creation of diverse functional arthropod communities should be considered for effective monarch conservation, particularly in southern latitudes.


2003 ◽  
Vol 79 (2) ◽  
pp. 242-246 ◽  
Author(s):  
M Isabel Ramírez ◽  
Joaquín G Azcárate ◽  
Laura Luna

Since the monarch butterfly overwintering habitat was discovered in the mountainous fir forests in central Mexico three presidential decrees have been issued (1980, 1986, 2001) to protect it. But these forests are the source of livelihood for many local people, whose activities (wood extraction and clearance for subsistence farming) represent a major threat to the forests, and thus to the butterfly population. This study identifies important deforestation, disturbance, and recovery processes caused by human activities in the protected areas and their surroundings. Contrary to our expectations, the protected areas have been most negatively affected by human activities, whereas areas devoted to multiple uses have been more adequately preserved. Key words: monarch butterfly habitat, deforestation, forest disturbance, protected areas


2020 ◽  
Vol 14 ◽  
Author(s):  
Patrick A. Guerra

The awe-inspiring annual migration of monarch butterflies (Danaus plexippus) is an iconic example of long-distance migratory phenomena in which environmental sensory cues help drive successful migration. In this mini-review article, I begin by describing how studies on monarch migration can provide us with generalizable information on how sensory cues can mediate key aspects of animal movement. I describe how environmental sensory cues can trigger the development and progression of the monarch migration, as well as inform sensory-based movement mechanisms in order to travel to and reach their goal destination, despite monarchs being on their maiden voyage. I also describe how sensory cues can trigger season-appropriate changes in migratory direction during the annual cycle. I conclude this mini-review article by discussing how contemporary environmental challenges threaten the persistence of the monarch migration. Environmental challenges such as climate change and shifting land use can significantly alter the sensory environments that monarchs migrate through, as well as degrade or eliminate the sources of sensory cues that are necessary for successful migration.


2019 ◽  
Vol 116 (8) ◽  
pp. 3006-3011 ◽  
Author(s):  
J. H. Boyle ◽  
H. J. Dalgleish ◽  
J. R. Puzey

Monarch butterfly (Danaus plexippus) decline over the past 25 years has received considerable public and scientific attention, in large part because its decline, and that of its milkweed (Asclepias spp.) host plant, have been linked to genetically modified (GM) crops and associated herbicide use. Here, we use museum and herbaria specimens to extend our knowledge of the dynamics of both monarchs and milkweeds in the United States to more than a century, from 1900 to 2016. We show that both monarchs and milkweeds increased during the early 20th century and that recent declines are actually part of a much longer-term decline in both monarchs and milkweed beginning around 1950. Herbicide-resistant crops, therefore, are clearly not the only culprit and, likely, not even the primary culprit: Not only did monarch and milkweed declines begin decades before GM crops were introduced, but other variables, particularly a decline in the number of farms, predict common milkweed trends more strongly over the period studied here.


2021 ◽  
Vol 10 (6) ◽  
pp. 384
Author(s):  
Javier Martínez-López ◽  
Bastian Bertzky ◽  
Simon Willcock ◽  
Marine Robuchon ◽  
María Almagro ◽  
...  

Protected areas (PAs) are a key strategy to reverse global biodiversity declines, but they are under increasing pressure from anthropogenic activities and concomitant effects. Thus, the heterogeneous landscapes within PAs, containing a number of different habitats and ecosystem types, are in various degrees of disturbance. Characterizing habitats and ecosystems within the global protected area network requires large-scale monitoring over long time scales. This study reviews methods for the biophysical characterization of terrestrial PAs at a global scale by means of remote sensing (RS) and provides further recommendations. To this end, we first discuss the importance of taking into account the structural and functional attributes, as well as integrating a broad spectrum of variables, to account for the different ecosystem and habitat types within PAs, considering examples at local and regional scales. We then discuss potential variables, challenges and limitations of existing global environmental stratifications, as well as the biophysical characterization of PAs, and finally offer some recommendations. Computational and interoperability issues are also discussed, as well as the potential of cloud-based platforms linked to earth observations to support large-scale characterization of PAs. Using RS to characterize PAs globally is a crucial approach to help ensure sustainable development, but it requires further work before such studies are able to inform large-scale conservation actions. This study proposes 14 recommendations in order to improve existing initiatives to biophysically characterize PAs at a global scale.


Sign in / Sign up

Export Citation Format

Share Document