scholarly journals Comparative Study of Cowpea Storage Technologies in the Sahel Region of Niger

Insects ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 689
Author(s):  
Ousmane N. Bakoye ◽  
Baoua Ibrahim ◽  
Haoua Seyni ◽  
Laouali Amadou ◽  
Larry L. Murdock ◽  
...  

Cowpea stored on smallholders’ farms suffers serious losses to insect pests. A study conducted in Niger compared five postharvest technologies marketed in sub-Saharan Africa to protect stored grain. Naturally-infested cowpea stored for eight months showed adult Callosobruchus maculatus (F.) mortality of 97% to 100% in the hermetic bags (PICSTM, SuperGrainbagTM, AgroZ®, EVAL™, and ZeroFly® bags). There was no change in grain damage and weight loss of cowpea stored in hermetic bags. There was, however, a loss of up to 10 to 16% in germination when the grain was stored in hermetic bags. Results observed for grain stored in ZeroFly® bags impregnated with deltamethrin were substantial and similar to those in control woven bags. In both ZeroFly® and woven bags, (1) adult C. maculatus population augmented by 35.7% and 78.6%, (2) increased weight losses of 27.3% and 25.2%, and (3) reduced germination of 37.0% and 28.8%, respectively. After opening the bags, abrasions were noted on the liners of hermetic bags, potential damage that could limit their reuse if they only have a single liner. Smallholder farmers in the Sahel can safely store their cowpea in all the hermetic bags tested. However, further research is needed to mitigate insect damage on liners of hermetic bags to improve their performance and reusability.

Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 541 ◽  
Author(s):  
Dieudonne Baributsa ◽  
Ousmane Nouhou Bakoye ◽  
Baoua Ibrahim ◽  
Larry L. Murdock

Several postharvest technologies are currently being commercialized to help smallholder farmers in sub-Saharan Africa reduce grain storage losses. We carried out a study in Northern Benin to compare the effectiveness of five technologies being sold to protect stored grain. Maize that had been naturally infested by insects was stored in four hermetic storage technologies (SuperGrainbag™, AgroZ® bag, EVAL™, and Purdue Improved Crop Storage-PICS™ bags), an insecticide impregnated bag (ZeroFly®), and a regular polypropylene (PP) woven bag as control. Oxygen levels in hermetic bags fluctuated between 0.5 ± 0.0 (v/v) and 1.0 ± 0.3 (v/v) percent during the seven months of storage. No weight loss or insect damage was observed in grain stored in any of the hermetic storage bags after seven months. However, grain stored in ZeroFly® and PP woven bags had weight losses of 6.3% and 10.3%, respectively. These results will help farmers and development agencies when making decisions to use and/or promote storage technologies to reduce postharvest grain losses.


2021 ◽  
Vol 13 (3) ◽  
pp. 1158
Author(s):  
Cecilia M. Onyango ◽  
Justine M. Nyaga ◽  
Johanna Wetterlind ◽  
Mats Söderström ◽  
Kristin Piikki

Opportunities exist for adoption of precision agriculture technologies in all parts of the world. The form of precision agriculture may vary from region to region depending on technologies available, knowledge levels and mindsets. The current review examined research articles in the English language on precision agriculture practices for increased productivity among smallholder farmers in Sub-Saharan Africa. A total of 7715 articles were retrieved and after screening 128 were reviewed. The results indicate that a number of precision agriculture technologies have been tested under SSA conditions and show promising results. The most promising precision agriculture technologies identified were the use of soil and plant sensors for nutrient and water management, as well as use of satellite imagery, GIS and crop-soil simulation models for site-specific management. These technologies have been shown to be crucial in attainment of appropriate management strategies in terms of efficiency and effectiveness of resource use in SSA. These technologies are important in supporting sustainable agricultural development. Most of these technologies are, however, at the experimental stage, with only South Africa having applied them mainly in large-scale commercial farms. It is concluded that increased precision in input and management practices among SSA smallholder farmers can significantly improve productivity even without extra use of inputs.


2011 ◽  
Vol 47 (2) ◽  
pp. 205-240 ◽  
Author(s):  
JAMES W. HANSEN ◽  
SIMON J. MASON ◽  
LIQIANG SUN ◽  
ARAME TALL

SUMMARYWe review the use and value of seasonal climate forecasting for agriculture in sub-Saharan Africa (SSA), with a view to understanding and exploiting opportunities to realize more of its potential benefits. Interaction between the atmosphere and underlying oceans provides the basis for probabilistic forecasts of climate conditions at a seasonal lead-time, including during cropping seasons in parts of SSA. Regional climate outlook forums (RCOF) and national meteorological services (NMS) have been at the forefront of efforts to provide forecast information for agriculture. A survey showed that African NMS often go well beyond the RCOF process to improve seasonal forecast information and disseminate it to the agricultural sector. Evidence from a combination of understanding of how climatic uncertainty impacts agriculture, model-based ex-ante analyses, subjective expressions of demand or value, and the few well-documented evaluations of actual use and resulting benefit suggests that seasonal forecasts may have considerable potential to improve agricultural management and rural livelihoods. However, constraints related to legitimacy, salience, access, understanding, capacity to respond and data scarcity have so far limited the widespread use and benefit from seasonal prediction among smallholder farmers. Those constraints that reflect inadequate information products, policies or institutional process can potentially be overcome. Additional opportunities to benefit rural communities come from expanding the use of seasonal forecast information for coordinating input and credit supply, food crisis management, trade and agricultural insurance. The surge of activity surrounding seasonal forecasting in SSA following the 1997/98 El Niño has waned in recent years, but emerging initiatives, such as the Global Framework for Climate Services and ClimDev-Africa, are poised to reinvigorate support for seasonal forecast information services for agriculture. We conclude with a discussion of institutional and policy changes that we believe will greatly enhance the benefits of seasonal forecasting to agriculture in SSA.


2021 ◽  
Vol 10 (6) ◽  
pp. 48
Author(s):  
David Mhlanga

The study intended to investigate the factors that are important in influencing the financial inclusion of smallholder farming households in Sub-Saharan Africa with a specific focus on Zimbabwe. Motivated by the fact that there is an increase in the evidence of the importance of financial inclusion in fighting poverty and the fact that by merely having a bank account, financial inclusion cannot be guaranteed, the study went further to interrogate factors that influence smallholder farmers to have a transaction account, to borrow and to have insurance. Since the dependent variable of financial inclusion had more than two categories, with three unordered categories, transaction account, savings/credit account, and insurance, the multinomial logistic regression was used to estimate the determinants of financial inclusion from these three categories of the dependent variable. The multinomial logit model results, with insurance as the reference category, indicated that the size of the household, transaction costs, gender and agricultural extension service were the factors influencing the demand for a household to open a transaction account. On the other hand, off-farm income and age of the household were the only two factors significantly influencing households to borrow. Therefore, it is imperative for, the government of Zimbabwe to come up with more policies that encourage farmers to participate in the formal financial market as financial inclusion can help to fight poverty and the general developments of societies.   Received: 28 April 2021 / Accepted: 31 August 2021 / Published: 5 November 2021


2021 ◽  
Author(s):  
Vine Mutyasira

The COVID-19 pandemic has continued to affect agri-food systems around the world and lay bare its fragility, worsening the welfare of millions of smallholder farmers whose livelihoods are anchored on agricultural activities. For the vast majority of sub-Saharan Africa, COVID-19 has coincided with a number of other macroeconomic shocks, which have also exacerbated the impacts of the pandemic on food security, nutrition and general livelihoods, as well curtailed policy responses and mitigation strategies. In Zimbabwe, the COVID-19 pandemic struck at a time the country was experiencing a worsening economic and humanitarian situation. This study focused more on community and household dynamics and response measures to cope with the pandemic. This paper presents a summary of findings emerging from a series of rapid assessment studies undertaken by the Agricultural Policy Research in Africa (APRA) Programme in Mvurwi and Concession areas of Mazowe District in Zimbabwe to examine how COVID-19 is affecting food systems and rural livelihoods in our research communities.


Author(s):  
Mesfin Wondafrash ◽  
Bernard Slippers ◽  
Birhane A Asfaw ◽  
Idea A Makowe ◽  
Herbert Jenya ◽  
...  

2020 ◽  
Vol 177 ◽  
pp. 86-93
Author(s):  
Ethiopia Nigussie ◽  
Thomas Olwal ◽  
George Musumba ◽  
Tesfa Tegegne ◽  
Atli Lemma ◽  
...  

2020 ◽  
Vol 113 (2) ◽  
pp. 974-979
Author(s):  
Prince C Addae ◽  
Mohammad F Ishiyaku ◽  
Jean-Batiste Tignegre ◽  
Malick N Ba ◽  
Joseph B Bationo ◽  
...  

Abstract Cowpea [Vigna unguiculata (L) Walp.] is an important staple legume in the diet of many households in sub-Saharan Africa. Its production, however, is negatively impacted by many insect pests including bean pod borer, Maruca vitrata F., which can cause 20–80% yield loss. Several genetically engineered cowpea events that contain a cry1Ab gene from Bacillus thuringiensis (Bt) for resistance against M. vitrata were evaluated in Nigeria, Burkina Faso, and Ghana (West Africa), where cowpea is commonly grown. As part of the regulatory safety package, these efficacy data were developed and evaluated by in-country scientists. The Bt-cowpea lines were planted in confined field trials under Insect-proof netting and artificially infested with up to 500 M. vitrata larvae per plant during bud formation and flowering periods. Bt-cowpea lines provided nearly complete pod and seed protection and in most cases resulted in significantly increased seed yield over non-Bt control lines. An integrated pest management strategy that includes use of Bt-cowpea augmented with minimal insecticide treatment for protection against other insects is recommended to control pod borer to enhance cowpea production. The insect resistance management plan is based on the high-dose refuge strategy where non-Bt-cowpea and natural refuges are expected to provide M. vitrata susceptible to Cry1Ab protein. In addition, there will be a limited release of this product until a two-toxin cowpea pyramid is released. Other than South African genetically engineered crops, Bt-cowpea is the first genetically engineered food crop developed by the public sector and approved for release in sub-Saharan Africa.


Sign in / Sign up

Export Citation Format

Share Document