scholarly journals Mitochondrial Genomes of Hestina persimilis and Hestinalis nama (Lepidoptera, Nymphalidae): Genome Description and Phylogenetic Implications

Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 754
Author(s):  
Yupeng Wu ◽  
Hui Fang ◽  
Jiping Wen ◽  
Juping Wang ◽  
Tianwen Cao ◽  
...  

In this study, the complete mitochondrial genomes (mitogenomes) of Hestina persimilis and Hestinalis nama (Nymphalidae: Apaturinae)were acquired. The mitogenomes of H. persimilis and H. nama are 15,252 bp and 15,208 bp in length, respectively. These two mitogenomes have the typical composition, including 37 genes and a control region. The start codons of the protein-coding genes (PCGs) in the two mitogenomes are the typical codon pattern ATN, exceptCGA in the cox1 gene. Twenty-one tRNA genes show a typical clover leaf structure, however, trnS1(AGN) lacks the dihydrouridine (DHU) stem. The secondary structures of rrnL and rrnS of two species were predicted, and there are several new stem loops near the 5’ of rrnL secondary structure. Based on comparative genomic analysis, four similar conservative structures can be found in the control regions of these two mitogenomes. The phylogenetic analyses were performed on mitogenomes of Nymphalidae. The phylogenetic trees show that the relationships among Nymphalidae are generally identical to previous studies, as follows: Libytheinae\Danainae + ((Calinaginae + Satyrinae) + Danainae\Libytheinae + ((Heliconiinae + Limenitidinae) + (Nymphalinae + (Apaturinae + Biblidinae)))). Hestinalisnama isapart fromHestina, andclosely related to Apatura, forming monophyly.

2014 ◽  
Vol 35 (3) ◽  
pp. 331-343 ◽  
Author(s):  
Yongmin Li ◽  
Huabin Zhang ◽  
Xiaoyou Wu ◽  
Hui Xue ◽  
Peng Yan ◽  
...  

We determined the complete nucleotide sequence of the mitochondrial genome of Odorrana schmackeri (family Ranidae). The O. schmackeri mitogenome (18 302 bp) contained 13 protein-coding genes, 2 rRNA genes, 21 tRNA genes and a single control region (CR). In the new mitogenome, the distinctive feature is the loss of tRNA-His, which could be explained by a hypothesis of gene substitution. The new sequence data was used to assess the phylogenetic relationships among 23 ranid species mostly from China using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic analyses support two families (Ranidae, Dicroglossidae) for Chinese ranids. In Ranidae, we support the genus Amolops should be retained in the subfamily Raninae rather than in a distinct subfamily Amolopinae of its own. Meanwhile, the monophyly of the genus Odorrana was supported. Within Dicroglossidae, four tribes were well supported including Occidozygini, Dicroglossini, Limnonectini and Paini. More mitochondrial genomes and nuclear genes are required to decisively evaluate phylogenetic relationships of ranids.


2019 ◽  
Vol 19 (6) ◽  
Author(s):  
Wanqing Zhao ◽  
Qing Zhao ◽  
Min Li ◽  
Jiufeng Wei ◽  
Xianhong Zhang ◽  
...  

Abstract The family Pentatomidae, the largest within the superfamily Pentatomoidae, comprises about 5,000 species; many of which are economically important pests. Although the phylogeny of Pentatomidae species has been studied using various molecular markers, their phylogenetic relationships remain controversial. Recently, mitochondrial genomes (mitogenomes) have been extensively employed to examine the phylogenetics and evolution of different insects, and in this study, we sequenced complete/near-complete mitochondrial genomes from five shield bug species of Eurydema to gain a better understanding of phylogenetic relationships in the Pentatomidae. The five mitogenomes ranged in length from 15,500 to 16,752 bp and comprised 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), 2 ribosomal RNAs (rRNAs), and a control region. We compared mitogenomic characteristics of the Pentatomidae and constructed phylogenetic trees using Bayesian inference and maximum likelihood methods. Our results showed that gene arrangements, base composition, start/stop codons, gene overlaps, and RNA structures were conserved within the Pentatomidae and that congeneric species shared more characteristics. Saturation and heterogeneity analyses revealed that our PCGs and PCGRNA datasets were valid for phylogenetic analysis. Phylogenetic analyses showed consistent topologies based on BI and ML methods. These analyses strongly supported that Eurydema species belong to the tribe Strachiini, and formed a sister group with Pentatomini. The relationships among Eurydema species were shown to be consistent with their morphological features. (Strachiini + Pentatomini) was found to be a stable sibling of the clade comprising Cappaeini, Graphosomini, and Carpocorini. Furthermore, our results indicated that Graphosoma rubrolineatum (Heteroptera: Pentatomidae) belongs to the Pentatominae and not the Podopinae.


ZooKeys ◽  
2021 ◽  
Vol 1070 ◽  
pp. 13-30
Author(s):  
Wanqing Zhao ◽  
Dajun Liu ◽  
Qian Jia ◽  
Xin Wu ◽  
Hufang Zhang

Mitochondrial genomes (mitogenomes) are widely used in research studies on phylogenetic relationships and evolutionary history. Here, we sequenced and analyzed the mitogenome of the scentless plant bug Myrmus lateralis Hsiao, 1964 (Heteroptera, Rhopalidae). The complete 17,309 bp genome encoded 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, two ribosomal RNA (rRNA) genes, and a control region. The mitogenome revealed a high A+T content (75.8%), a positive AT-skew (0.092), and a negative GC-skew (–0.165). All 13 PCGs were found to start with ATN codons, except for cox1, in which TTG was the start codon. The Ka/Ks ratios of 13 PCGs were all lower than 1, indicating that purifying selection evolved in these genes. All tRNAs could be folded into the typical cloverleaf secondary structure, except for trnS1 and trnV, which lack dihydrouridine arms. Phylogenetic trees were constructed and analyzed based on the PCG+rRNA from 38 mitogenomes, using maximum likelihood and Bayesian inference methods, showed that M. lateralis and Chorosoma macilentum Stål, 1858 grouped together in the tribe Chorosomatini. In addition, Coreoidea and Pyrrhocoroidea were sister groups among the superfamilies of Trichophora, and Rhopalidae was a sister group to Alydidae + Coreidae.


2010 ◽  
Vol 31 (3) ◽  
pp. 299-309 ◽  
Author(s):  
Peng Yan ◽  
Ge Feng ◽  
Xiaoqiang Li ◽  
Xiaobing Wu

AbstractThe complete mitochondrial (mt) genomes of two crocodilians: Crocodylus palustris and Crocodylus mindorensis, were sequenced in order to examine their gene and genome features. Additionally, we intended to increase the amount of molecular data suitable for phylogenetic analysis. Their gene orders conform to other crocodilians that have been sequenced, except the arrangement of two tRNA genes differ from other vertebrates, showing that the gene order of crocodilians is remarkably conserved. Phylogenetic analyses (maximum likelihood, Bayesian inference) based on the mt protein-coding genes at the nucleotide level were performed among crocodilians for which complete mt genomes were available. The results suggest that the gharial (Gavialis gangeticus) joins the false gharial (Tomistoma schlegelii) on a common branch, that constitutes a sister group to traditional Crocodylidae. In this report, Mecistops cataphractus is evidently most closely related to Osteolaemus tetraspis. They are isolated as sister taxon from the main clades in Crocodylus. Regarding Paleosuchus, it appears as sister group to Caiman within the Alligatoridae. In particular, relationships among species of Crocodylus (true crocodiles) are discussed.


Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 338
Author(s):  
Yan Jiang ◽  
Hao-Xi Li ◽  
Xiao-Fei Yu ◽  
Mao-Fa Yang

The complete mitochondrial genomes of Atkinsoniella grahami and Atkinsoniella xanthonota were sequenced. The results showed that the mitogenomes of these two species are 15,621 and 15,895 bp in length, with A+T contents of 78.6% and 78.4%, respectively. Both mitogenomes contain 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and a control region (CR). For all PCGs, a standard start ATN codon (ATT, ATG, or ATA) was found at the initiation site, except for ATP8, for which translation is initiated with a TTG codon. All PCGs terminate with a complete TAA or TAG stop codon, except for COX2, which terminates with an incomplete stop codon T. All tRNAs have the typical cloverleaf secondary structure, except for trnS, which has a reduced dihydrouridine arm. Furthermore, these phylogenetic analyses were reconstructed based on 13 PCGs and two rRNA genes of 73 mitochondrial genome sequences, with both the maximum likelihood (ML) and Bayesian inference (BI) methods. The obtained mitogenome sequences in this study will promote research into the classification, population genetics, and evolution of Cicadellinae insects in the future.


ZooKeys ◽  
2019 ◽  
Vol 835 ◽  
pp. 43-63 ◽  
Author(s):  
Jin–Jun Cao ◽  
Ying Wang ◽  
Yao–Rui Huang ◽  
Wei–Hai Li

In this study, two new mitochondrial genomes (mitogenomes) ofMesonemourametafiligeraandMesonemouratritaeniafrom the family Nemouridae (Insecta: Plecoptera) were sequenced. TheMesonemourametafiligeramitogenome was a 15,739 bp circular DNA molecule, which was smaller than that ofM.tritaenia(15,778 bp) due to differences in the size of the A+T-rich region. Results show that gene content, gene arrangement, base composition, and codon usage were highly conserved in two species. Ka/Ks ratios analyses of protein-coding genes revealed that the highest and lowest rates were found in ND6 and COI and that all these genes were evolving under purifying selection. All tRNA genes in nemourid mitogenomes had a typical cloverleaf secondary structure, except for tRNASer(AGN)which appeared to lack the dihydrouridine arm. The multiple alignments of nemourid lrRNA and srRNA genes showed that sequences of three species were highly conserved. All the A+T-rich region included tandem repeats regions and stem-loop structures. The phylogenetic analyses using Bayesian inference (BI) and maximum likelihood methods (ML) generated identical results. Amphinemurinae and Nemourinae were sister-groups and the family Nemouridae was placed as sister to Capniidae and Taeniopterygidae.


2020 ◽  
Vol 145 (2) ◽  
Author(s):  
Fei Ye ◽  
Ting Liu ◽  
Wenbo Zhu ◽  
Ping You

The complete mitochondrial genome of Whitmania laevis is 14,442 bp in length and contains 37 genes including 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and two ribosomal RNA (rRNA) genes. The almost-complete mitochondrial genome of Whitmania acranulata, consisting of 13,494 bp, contains 35 genes including 13 PCGs, 20 tRNA genes, and two rRNA genes. COI phylogenetic analyses showed that the samples reported in GenBank and analysed as Hirudo nipponia KC667144, Hirudinaria manillensis KC688268 and Erpobdella octoculata KC688270 are not the named species and they should belong to Whitmania. We compared and analyzed the characteristics of nucleotide composition, codon usage, and secondary structures of 22 tRNAs and two rRNAs from Whitmania taxa. Moreover, we analyzed phylogenetic relationships of Annelida using maximum likelihood (ML) and Bayesian inference (BI) methods, based on 11 mitochondrial genes. Our results reveal that W. laevis has a close relationship with W. pigra.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 524
Author(s):  
Jing Liu ◽  
Yuyu Wang ◽  
Ruyue Zhang ◽  
Chengmin Shi ◽  
Weicheng Lu ◽  
...  

The family Erotylidae belongs to the superfamily Cucujoidea, which are phytophagous and mycophagous. So far, only two representative complete mitochondrial (mt) genomes of Erotylidae have been sequenced. Mitochondrial genomes of Tritoma metasobrina, Neotriplax arisana, and Episcapha opaca, which all belong to the subfamily Erotylinae, were sequenced using next-generation sequencing technology to better understand the diversity of mt genomes of Erotylidae. A comparative mt genomic analysis was conducted on the three sequenced representatives of Erotylinae and Languriinae sp. (Languriinae). The size of the complete mt genome of the 4 species ranged from 15,581 bp to 16,502 bp in length, including 37 genes (13 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs) and the control region. The arrangements of their mt genomes are highly consistent with other Coleoptera species. The start codons of two PCGs (ND1 and ND5) and the stop codons of one PCG (ATP8) were illustrated differences between Languriinae sp. and the other three species. All tRNAs of these 4 species exhibited cloverleaf secondary structures except that the dihydorouridine (DHU) arm of tRNASer(AGN) was absent. The phylogenetic analyses using both Bayesian inference (BI) and maximum likelihood (ML) methods all supported that Erotylidae as monophyletic. Erotylinae was monophyletic being the sister group to Xenocelinae. Languriinae was closely related to ‘Erotylinae-Xenocelinae’. Our results recovered Languriinae nested within Erotylidae.


2021 ◽  
Author(s):  
Xianmei Song ◽  
Yuchen Zhao ◽  
Peng Zhao ◽  
Yinxiang Ma ◽  
Ming Bai ◽  
...  

Abstract Background: Polygraphus poligraphus L., the four-eyed spruce bark beetle, belongs to the Curculionidae (Coleoptera), which mainly harms Picea asperata Mast and Pinus armandii Franch tree trunks. So far, there is no mitochondrial genome reported for P. poligraphus.Results: In this study, we sequenced and annotated the nearly complete mitogenome of P. poligraphus for the first time and predicted the secondary structures of its tRNAs. The results showed that the mitogenome of P. poligraphus was 15,302 bp (partial genome) in length with A + T content of 69.65% due to large-scale duplication. The nearly complete mitochondrial genome of P. Poligraphus contained a set of 36 genes typical of the insect mitogenome, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes (rRNAs), 21 transfer RNA genes (tRNAs) but lacked tRNA-Ile, as for the typical insect mitogenome. The results of nucleotide skew statistics showed that the AT-skews and GC-skew of P. poligraphus were positive and negative, respectively, which were similar to other Scolytinae insects. All PCGs were initiated with the standard start codon ATN. All tRNA genes had the typical cloverleaf structure, except for the trnS1, which lacked a dihydroxyuridine (DHU) arm. Furthermore, we reconstructed phylogenetic trees of P. poligraphus based on the data set of the mitogenome’s protein-coding gene sequences using the Bayesian inference (BI) method. Phylogenetic analysis indicated that the P. poligraphus mitogenome clustered with Gnathotrichus materiarius and Pityophthorus pubescens mitogenomes in a monophyletic manner. The phylogeny of these three genera of Scolytinae is presented as Polygraphus + (Gnathotrichus + Pityophthorus). Conclusions: The results presented herein will provide a reference for further molecular taxonomy, evolution and phylogenetic research of P. poligraphus. However, additional mitogenome samples are still needed to more satisfactorily resolve the phylogeny of the Scolytinae.


2021 ◽  
Author(s):  
Jiequn Yi ◽  
Han Wu ◽  
Jianbai Liu ◽  
Jihu Li ◽  
Yinglin Lu ◽  
...  

Abstract The genus Anastatus comprises a large group of parasitoids, including several biological control agents in agricultural and forest systems. The taxonomy and phylogeny of these species remain controversial. In this study, the mitogenome of A. fulloi Sheng and Wang was sequenced and characterized. The nearly full-length mitogenome of A. fulloi was 15,692 bp, compromising 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes and a control region (CR). The total A + T contents were 83.83%, 82.18%, 87.58%, 87.27%, and 82.13% in the whole mitogenome, 13 PCGs, 22 tRNA genes, 2 rRNA genes, and CR, respectively. The mitogenome presented negative AT skews and positive GC skews, except for the CR. Most PCGs were encoded on the majority strand, started with ATN codons, and ended with TAA codons. Among the 3736 amino acid-encoding codons, TTA (Leu1), CGA (Arg), TCA (Ser2), and TCT (Ser2) were predominant. Most tRNAs had cloverleaf secondary structures, except trnS1, with the absence of a dihydrouridine (DHU) arm. Compared with mitogenomes of the ancestral insect and another parasitoid within Eupelmidae, large-scale rearrangements were found in the mitogenome of A. fulloi, especially inversions and inverse transpositions of tRNA genes. The gene arrangements of parasitoid mitogenomes within Chalcidoidea were variable. A novel gene arrangement was presented in the mitogenome of A. fulloi. Phylogenetic analyses based on the 13 protein-coding genes of 20 parasitoids indicated that the phylogenetic relationship of 6 superfamilies could be presented as Mymaridae + (Eupelmidae + (Encyrtidae + (Trichogrammatidae + (Pteromalidae + Eulophidae)))). This study presents the first complete mitogenome of the Anastatus genus and offers insights into the identification, taxonomy, and phylogeny of these parasitoids.


Sign in / Sign up

Export Citation Format

Share Document