scholarly journals Characterization of Two Complete Mitochondrial Genomes of Atkinsoniella (Hemiptera: Cicadellidae: Cicadellinae) and the Phylogenetic Implications

Insects ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 338
Author(s):  
Yan Jiang ◽  
Hao-Xi Li ◽  
Xiao-Fei Yu ◽  
Mao-Fa Yang

The complete mitochondrial genomes of Atkinsoniella grahami and Atkinsoniella xanthonota were sequenced. The results showed that the mitogenomes of these two species are 15,621 and 15,895 bp in length, with A+T contents of 78.6% and 78.4%, respectively. Both mitogenomes contain 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and a control region (CR). For all PCGs, a standard start ATN codon (ATT, ATG, or ATA) was found at the initiation site, except for ATP8, for which translation is initiated with a TTG codon. All PCGs terminate with a complete TAA or TAG stop codon, except for COX2, which terminates with an incomplete stop codon T. All tRNAs have the typical cloverleaf secondary structure, except for trnS, which has a reduced dihydrouridine arm. Furthermore, these phylogenetic analyses were reconstructed based on 13 PCGs and two rRNA genes of 73 mitochondrial genome sequences, with both the maximum likelihood (ML) and Bayesian inference (BI) methods. The obtained mitogenome sequences in this study will promote research into the classification, population genetics, and evolution of Cicadellinae insects in the future.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 757
Author(s):  
Qi Sun ◽  
Yumeng Yang ◽  
Xiangyu Hao ◽  
Jintian Xiao ◽  
Jiaqi Liu ◽  
...  

To determine the significance of mitochondrial genome characteristics in revealing phylogenetic relationships and to shed light on the molecular evolution of the Coeliadinae species, the complete mitochondrial genomes (mitogenomes) of five Coeliadinae species were newly sequenced and analyzed, including Hasora schoenherr, Burara miracula, B. oedipodea, B. harisa, and Badamia exclamationis. The results show that all five mitogenomes are double-strand circular DNA molecules, with lengths of 15,340 bp, 15,295 bp, 15,304 bp, 15,295 bp, and 15,289 bp, respectively, and contain the typical 37 genes and a control region. Most protein-coding genes (PCGs) begin with ATN, with 3 types of stop codons including TAA, TAG, and an incomplete codon T-; most of the genes terminate with TAA. All of the transfer RNA genes (tRNAs) present the typical cloverleaf secondary structure except for the trnS1. Several conserved structural elements are found in the AT-rich region. Phylogenetic analyses based on three datasets (PCGs, PRT, and 12PRT) and using maximum likelihood (ML) and Bayesian inference (BI) methods show strong support for the monophyly of Coeliadinae, and the relationships of the five species are (B. exclamationis + ((B. harisa + (B. oedipodea + B. miracula)) + H. schoenherr)).



Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1185
Author(s):  
Wenqian Wang ◽  
Huan Zhang ◽  
Jérôme Constant ◽  
Charles R. Bartlett ◽  
Daozheng Qin

The complete mitogenomes of nine fulgorid species were sequenced and annotated to explore their mitogenome diversity and the phylogenetics of Fulgoridae. All species are from China and belong to five genera: Dichoptera Spinola, 1839 (Dichoptera sp.); Neoalcathous Wang and Huang, 1989 (Neoalcathous huangshanana Wang and Huang, 1989); Limois Stål, 1863 (Limois sp.); Penthicodes Blanchard, 1840 (Penthicodes atomaria (Weber, 1801), Penthicodes caja (Walker, 1851), Penthicodes variegata (Guérin-Méneville, 1829)); Pyrops Spinola, 1839 (Pyrops clavatus (Westwood, 1839), Pyrops lathburii (Kirby, 1818), Pyrops spinolae (Westwood, 1842)). The nine mitogenomes were 15,803 to 16,510 bp in length with 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region (A + T-rich region). Combined with previously reported fulgorid mitogenomes, all PCGs initiate with either the standard start codon of ATN or the nonstandard GTG. The TAA codon was used for termination more often than the TAG codon and the incomplete T codon. The nad1 and nad4 genes varied in length within the same genus. A high percentage of F residues were found in the nad4 and nad5 genes of all fulgorid mitogenomes. The DHU stem of trnV was absent in the mitogenomes of all fulgorids sequenced except Dichoptera sp. Moreover, in most fulgorid mitogenomes, the trnL2, trnR, and trnT genes had an unpaired base in the aminoacyl stem and trnS1 had an unpaired base in the anticodon stem. The similar tandem repeat regions of the control region were found in the same genus. Phylogenetic analyses were conducted based on 13 PCGs and two rRNA genes from 53 species of Fulgoroidea and seven outgroups. The Bayesian inference and maximum likelihood trees had a similar topological structure. The major results show that Fulgoroidea was divided into two groups: Delphacidae and ((Achilidae + (Lophopidae + (Issidae + (Flatidae + Ricaniidae)))) + Fulgoridae). Furthermore, the monophyly of Fulgoridae was robustly supported, and Aphaeninae was divided into Aphaenini and Pyropsini, which includes Neoalcathous, Pyrops, Datua Schmidt, 1911, and Saiva Distant, 1906. The genus Limois is recovered in the Aphaeninae, and the Limoisini needs further confirmation; Dichoptera sp. was the earliest branch in the Fulgoridae.



Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1049
Author(s):  
Huifeng Zhao ◽  
Ye Chen ◽  
Zitong Wang ◽  
Haifeng Chen ◽  
Yaoguang Qin

The complete mitochondrial genomes of two species of Chalcididae were newly sequenced: Brachymeria lasus and Haltichella nipponensis. Both circular mitogenomes are 15,147 and 15,334 bp in total length, respectively, including 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), and 22 transfer RNA genes (tRNAs) and an A+T-rich region. The nucleotide composition indicated a strong A/T bias. All PCGs of B. lasus and H. nipponensis began with the start codon ATD, except for B. lasus, which had an abnormal initiation codon TTG in ND1. Most PCGs of the two mitogenomes are terminated by a codon of TAR, and the remaining PCGs by the incomplete stop codon T or TA (ATP6, COX3, and ND4 in both species, with an extra CYTB in B. lasus). Except for trnS1 and trnF, all tRNAs can be folded into a typical clover structure. Both mitogenomes had similar control regions, and two repeat units of 135 bp were found in H. nipponensis. Phylogenetic analyses based on two datasets (PCG123 and PCG12) covering Chalcididae and nine families of Chalcidoidea were conducted using two methods (maximum likelihood and Bayesian inference); all the results support Mymaridae as the sister group of the remaining Chalcidoidea, with Chalcididae as the next successive group. Only analyses of PCG123 generated similar topologies of Mymaridae + (Chalcididae + (Agaonidae + remaining Chalcidoidea)) and provided one relative stable clade as Eulophidae + (Torymidae + (Aphelinidae + Trichogrammatidae)). Our mitogenomic phylogenetic results share one important similarity with earlier molecular phylogenetic efforts: strong support for the monophyly of many families, but a largely unresolved or unstable “backbone” of relationships among families.



PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12465
Author(s):  
Nian Gong ◽  
Lin Yang ◽  
Xiangsheng Chen

Here, the complete mitochondrial genomes (mitogenomes) of 12 Caliscelidae species, Augilina tetraina, Augilina triaina, Symplana brevistrata, Symplana lii, Neosymplana vittatum, Pseudosymplanella nigrifasciata, Symplanella brevicephala, Symplanella unipuncta, Augilodes binghami, Cylindratus longicephalus, Caliscelis shandongensis, and Peltonotellus sp., were determined and comparatively analyzed. The genomes varied from 15,424 to 16,746 bp in size, comprising 37 mitochondrial genes and an A+T-rich region. The typical gene content and arrangement were similar to those of most Fulgoroidea species. The nucleotide compositions of the mitogenomes were biased toward A/T. All protein-coding genes (PCGs) started with a canonical ATN or GTG codon and ended with TAN or an incomplete stop codon, single T. Among 13 PCGs in 16 reported Caliscelidae mitogenomes, cox1 and atp8 showed the lowest and highest nucleotide diversity, respectively. All PCGs evolved under purifying selection, with atp8 considered a comparatively fast-evolving gene. Phylogenetic relationships were reconstructed based on 13 PCGs in 16 Caliscelidae species and five outgroups using maximum likelihood and Bayesian inference analyses. All species of Caliscelidae formed a steadily monophyletic group with high support. Peltonotellini was present at the basal position of the phylogenetic tree. Augilini was the sister group to Caliscelini and Peltonotellini.



Author(s):  
Shu-Tong Dai ◽  
Dian-Xing Feng ◽  
Da-Peng Sun

Abstract The mitochondrial genome is frequently used for species identification and phylogenetic studies. In this study, we first sequenced and annotated the complete mitochondrial genomes of two phorid species that are forensically important in buried or enclosed environments: Metopina sagittata (Liu) and Puliciphora borinquenensis (Wheeler). The complete mitochondrial genome sequences of M. sagittata and P. borinquenensis were 15,640 bp with an A+T content of 75.97% and 15,429 bp with an A+T content of 75.38%, respectively. Their circular genomes both contained 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 control region located between rrnS and trnI which was 808 bp for M. sagittata and 746 bp for P. borinquenensis. All the PCGs of both species started with ATN codons except for cox1 which used TTG codon. In addition to the common stop codon TAA and TAG, the incomplete stop codon T was used in two PCGs (cox1 and nad4) of M. sagittata and five PCGs (cox1, cox2, cox3, nad5, and nad4) of P. borinquenensis. There were 3 and 10 mismatched base pairs in the tRNA secondary structures from M. sagittata and P. borinquenensis, respectively. Both maximum likelihood and Bayesian inference analyses indicated that Platypezidae and Phoridae are sister taxa. M. sagittata is closely related to P. borinquenensis within the subfamily Metopininae. This work enhances the databases of Phoridae genomes and contributes to the further study of species identification and phylogenetics of this family.



Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 563 ◽  
Author(s):  
Hu Li

In this study, the complete mitochondrial genomes (mitogenomes) of two hoverfly species of Korinchia angustiabdomena (Huo, Ren, and Zheng) and Volucella nigricans Coquillett (Diptera: Syrphidae) were determined and analyzed. The circular mitogenomes were 16,473 bp in K. angustiabdomena (GenBank No. MK870078) and 15,724 bp in V. nigricans (GenBank No. MK870079). Two newly sequenced mitogenomes both contained 37 genes, and the gene order was similar with other syrphine species. All the protein-coding genes (PCGs) were started with the standard ATN codons; and most of PCGs were terminated with a TAA stop codon, while ND1 in K. angustiabdomena ended with a TAG codon, and ND5 terminated with truncated T stop codons in both species. The phylogenetic relationship between K. angustiabdomena and V. nigricans with related lineages was reconstructed using Bayesian inference and Maximum-likelihood analyses. The monophyly of each family considered within Muscomorpha was confirmed by the clades in the phylogenetic tree, and superfamily of the Oestroidea (Calliphoridae, Sarcophagidae, and Oestridae) was unexpectedly found to be a paraphyletic group based on our selected data. This mitogenome information for K. angustiabdomena and V. nigricans could facilitate future studies of evolutionarily related insects.



2020 ◽  
Vol 21 (10) ◽  
pp. 3545
Author(s):  
Yi Yang ◽  
Hongyue Liu ◽  
Lu Qi ◽  
Lingfeng Kong ◽  
Qi Li

The Indo-Pacific nassariids (genus Nassarius) possesses the highest diversity within the family Nassariidae. However, the previous shell or radula-based classification of Nassarius is quite confusing due to the homoplasy of certain morphological characteristics. The toxin accumulators Nassarius glans and Nassarius siquijorensis are widely distributed in the subtidal regions of the Indo-Pacific Ocean. In spite of their biological significance, the phylogenetic positions of N. glans and N. siquijorensis are still undetermined. In the present study, the complete mitochondrial genomes of N. glans and N. siquijorensis were sequenced. The present mitochondrial genomes were 15,296 and 15,337 bp in length, respectively, showing negative AT skews and positive GC skews as well as a bias of AT rich on the heavy strand. They contained 13 protein coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and several noncoding regions, and their gene order was identical to most caenogastropods. Based on the nucleotide sequences combining 13 protein coding genes and two rRNA genes, a well-supported phylogeny of Nassarius was reconstructed, and several morphological synapomorphies were observed corresponding to the phylogenetic framework. In addition, the sister group relationship between N. variciferus and the remaining toxin-accumulated nassariids was determined, suggesting that the phylogeny might be related to their diet. The divergence time estimation analysis revealed a correlation between speciation events of nassariids and glacial cycles during the Pliocene-Pleistocene epoch.



Insects ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 779
Author(s):  
Xiaoxiao Chen ◽  
Qing Song ◽  
Min Huang

The complete mitochondrial genomes of Xenostrongylusvariegatus and Epuraea sp. were sequenced and analyzed. The total genome lengths are 17,657 and 16,641 bp, with an A+T content of 77.2% and 76.4%, respectively. Each mitochondrial genome consists of 37 coding genes and a non-coding (AT-rich) region. All protein-coding genes (PCGs) start with the standard start codon, ATN, and end with complete stop codons, TAA and TAG, or an incomplete stop codon, T. All tRNAs can be folded into the typical clover-leaf secondary structure, with the exception of trnS1 in both species with a reduced dihydrouridine (DHU) arm. The AT-rich region has tandem repeats differing in both number and length. Genetic distance and Ka/Ks analyses show that nad6 has a higher variability and more rapid evolutionary rate than other PCGs. Both maximum likelihood and Bayesian inference phylogenetic analyses based on 13 PCGs and 2 ribosome DNAs (rDNAs) agree with the previous phylogenies in supporting the Nitidulidae monophyly and the sister-group relationship of Kateretidae + (Monotomidae + Nitidulidae).



2015 ◽  
Vol 97 (1) ◽  
pp. 234-245 ◽  
Author(s):  
Pascuala Ambriz-Morales ◽  
Xochitl F. De La Rosa-Reyna ◽  
Ana Maria Sifuentes-Rincon ◽  
G. Manuel Parra-Bracamonte ◽  
Abraham Villa-Melchor ◽  
...  

Abstract The white-tailed deer ( Odocoileus virginianus ) is an important, sustainable-use species in Mexico; 14 subspecies are widely distributed throughout the Mexican territory. The criteria for classifying subspecies is based on morphological features throughout their geographical range; however, the complete genetic characterization of Mexican subspecies has not been established. The objective of the present work is to report the mitogenomes of 9 of the 14 white-tailed deer subspecies from Mexico and identify their unique variations. Typical vertebrate mitogenomes structures (i.e., 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes) were observed in the studied subspecies. The greatest numbers of polymorphisms were identified in the D-loop, ND4, ND5, CYTB/COI, ATP6, and COIII genes. Phylogenetic analyses showed that the southern and southeastern subspecies were distinct from the central and northern subspecies; the greatest genetic distances were also observed between these 2 groups. These subspecies-specific variations could be useful for designing a strategy to genetically characterize the studied subspecies. El venado cola blanca es una de las especies de mayor importancia dentro del aprovechamiento de la fauna silvestre de México, donde se distribuyen de manera natural 14 subespecies. Actualmente, estas subespecies se han clasificado de acuerdo a sus variaciones fenotípicas que presentan a lo largo de su rango de distribución, sin embargo no se ha establecido la caracterización genética completa de las mismas. Es por esto que el objetivo del presente estudio es reportar los mitogenomas de 9 de las 14 subespecies de venado cola blanca, así como identificar las variaciones únicas de cada subespecie. En las 9 subespecies se observó la estructura típica de los mitogenomas de vertebrados (13 genes que codifican para proteínas, 22 ARNt, 2 ARNr). Los genes con mayor polimorfismo fueron D-loop, ND4, ND5, CYTB/COI, ATP6 y COIII. El análisis filogenético mostró la separación de las subespecies del sur y sureste de las subespecies del centro y norte del país, a su vez las distancias genéticas entre estos dos grupos fueron las más altas. Estas variaciones subespecie-específicas podrían ser útiles para diseñar una estrategia para caracterizar genéticamente las subespecies estudiadas.



Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 597
Author(s):  
Rongrong Li ◽  
Min Li ◽  
Jiang Yan ◽  
Ming Bai ◽  
Hufang Zhang

Four complete mitogenomes of Eysarcoris rosaceus, E. montivagus, E. gibbosus, E. annamita and one near-complete mitochondrial genome of E. ventralis were sequenced and used to explore the phylogenetic relationships of tribes within the subfamily Pentatominae. The mitogenomes range from 15,422 to 16,043 base pairs (bp) in length and encode 37 genes, including 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes (21 in E. ventralis), and a control region. Similar to other heteropteran species, the AT contents of the sequenced species were higher than their GC contents. The most frequently used start/stop codon was ATN/TAA. GTG was only found in atp6 and atp8 of E. gibbosus. All transfer RNA genes (tRNAs) exhibit the typical cloverleaf secondary structure, except for the trnS1 and trnV, which lacks the stem of the DHU arm. The length and copy number of repeat units were conserved within Eysarcoris, with the exception of E. gibbosus. Phylogenetic analyses based on mitogenomes using both maximum likelihood (ML) and Bayesian inference (BI) methods strongly supported the relationship among tribes within Pentatominae and confirmed that Graphosoma should be an intermediate lineage of Pentatominae. The relationship between Eysarcoris and Carbula was strongly supported and combined with our previous geometric morphometrics and chromosomal studies, suggest the Eysarcoris should belong to the tribe Eyasrcorini. This work will help to enhance our understanding of mitochondrial genomic evolution and phylogenetic relationships in Pentatominae.



Sign in / Sign up

Export Citation Format

Share Document