scholarly journals Body Size Variation in a Social Sweat Bee, Halictus ligatus (Halictidae, Apoidea), across Urban Environments

Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1086
Author(s):  
Rachel A. Brant ◽  
Gerardo R. Camilo

High morphological variation is often associated with species longevity, and it is hypothesized that urban-dwelling species may require more plasticity in functional traits such as body size in order to maximize fitness in heterogeneous environments. There has been published research regarding the functional trait diversity of urban bee pollinators. However, no two cities are identical, so the implementation of multi-city studies is vital. Therefore, we compared body size variation in female Halicus ligatus sweat bees from May–October 2016 from three distinct Midwestern United States cities: Chicago, Detroit, and Saint Louis. Additionally, to elucidate potentially influential environmental factors, we assessed the relationship between temperature and measured body size. We collected bees in community gardens and urban farms and measured their head width and intertegular distance as a proxy for overall body size. We utilized an ANCOVA to determine whether body size variation differed significantly across the three surveyed cities. Results indicated that H. ligatus females in Chicago, Detroit, and Saint Louis had significantly different body size ranges. These findings highlight the importance of intraspecific body size variation and support our prediction that bees from different urban environments will have distinct ranges in body size due to local ecological factors affecting their populations. Additionally, we found a significant influence of temperature, though this is probably not the only important ecological characteristic impacting bee body size. Therefore, we also provided a list of predictions for the future study of specific variables that are likely to impact functional trait diversity in urban bees.

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3051 ◽  
Author(s):  
Étienne Normandin ◽  
Nicolas J. Vereecken ◽  
Christopher M. Buddle ◽  
Valérie Fournier

Urbanization is one of the major anthropogenic processes contributing to local habitat loss and extirpation of numerous species, including wild bees, the most widespread pollinators. Little is known about the mechanisms through which urbanization impacts wild bee communities, or the types of urban green spaces that best promote their conservation in cities. The main objective of this study was to describe and compare wild bee community diversity, structure, and dynamics in two Canadian cities, Montreal and Quebec City. A second objective was to compare functional trait diversity among three habitat types (cemeteries, community gardens and urban parks) within each city. Bees were collected using pan traps and netting on the same 46 sites, multiple times, over the active season in 2012 and 2013. A total of 32,237 specimens were identified, representing 200 species and 6 families, including two new continental records,Hylaeus communisNylander (1852) andAnthidium florentinum(Fabricius, 1775). Despite high community evenness, we found significant abundance of diverse species, including exotic ones. Spatio-temporal analysis showed higher stability in the most urbanized city (Montreal) but low nestedness of species assemblages among the three urban habitats in both cities. Our study demonstrates that cities are home to diverse communities of wild bees, but in turn affect bee community structure and dynamics. We also found that community gardens harbour high levels of functional trait diversity. Urban agriculture therefore contributes substantially to the provision of functionally diverse bee communities and possibly to urban pollination services.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maggie M. Hantak ◽  
Bryan S. McLean ◽  
Daijiang Li ◽  
Robert P. Guralnick

AbstractAnthropogenically-driven climate warming is a hypothesized driver of animal body size reductions. Less understood are effects of other human-caused disturbances on body size, such as urbanization. We compiled 140,499 body size records of over 100 North American mammals to test how climate and human population density, a proxy for urbanization, and their interactions with species traits, impact body size. We tested three hypotheses of body size variation across urbanization gradients: urban heat island effects, habitat fragmentation, and resource availability. Our results demonstrate that both urbanization and temperature influence mammalian body size variation, most often leading to larger individuals, thus supporting the resource availability hypothesis. In addition, life history and other ecological factors play a critical role in mediating the effects of climate and urbanization on body size. Larger mammals and species that utilize thermal buffering are more sensitive to warmer temperatures, while flexibility in activity time appears to be advantageous in urbanized areas. This work highlights the value of using digitized, natural history data to track how human disturbance drives morphological variation.


2015 ◽  
Vol 18 (12) ◽  
pp. 1346-1355 ◽  
Author(s):  
Hélène Deraison ◽  
Isabelle Badenhausser ◽  
Nicolas Loeuille ◽  
Christoph Scherber ◽  
Nicolas Gross

2016 ◽  
Vol 6 (5) ◽  
pp. 1447-1456 ◽  
Author(s):  
Luiz Carlos S. Lopez ◽  
Marcos S. L. Figueiredo ◽  
Maria Paula de Aguiar Fracasso ◽  
Daniel Oliveira Mesquita ◽  
Ulisses Umbelino Anjos ◽  
...  

2018 ◽  
Vol 32 (5) ◽  
pp. 1379-1389 ◽  
Author(s):  
Hui Zhang ◽  
Han Y. H. Chen ◽  
Juyu Lian ◽  
Robert John ◽  
Li Ronghua ◽  
...  

2020 ◽  
Vol 287 ◽  
pp. 106691 ◽  
Author(s):  
Carolyn J. Lowry ◽  
Sidney C. Bosworth ◽  
Sarah C. Goslee ◽  
Richard J. Kersbergen ◽  
Fredric W. Pollnac ◽  
...  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Yingying Sun ◽  
Yanzhi Liu ◽  
Xiaohui Sun ◽  
Yurui Lin ◽  
Daiqing Yin ◽  
...  

2019 ◽  
Vol 64 (5) ◽  
pp. 2140-2151
Author(s):  
Maria Włodarska‐Kowalczuk ◽  
Magnus Aune ◽  
Loïc N. Michel ◽  
Agata Zaborska ◽  
Joanna Legeżyńska

2018 ◽  
Vol 96 (11) ◽  
pp. 1196-1202 ◽  
Author(s):  
Brett A. DeGregorio ◽  
Gabriel Blouin-Demers ◽  
Gerardo L.F. Carfagno ◽  
J. Whitfield Gibbons ◽  
Stephen J. Mullin ◽  
...  

Because body size affects nearly all facets of an organism’s life history, ecologists have long been interested in large-scale patterns of body-size variation, as well as why those large-scale patterns often differ between sexes. We explored body-size variation across the range of the sexually dimorphic Ratsnake complex (species of the genus Pantherophis Fitzinger, 1843 s.l.; formerly Elaphe obsoleta (Say in James, 1823)) in North America. We specifically explored whether variation in body size followed latitudinal patterns or varied with climatic variables. We found that body size did not conform to a climatic or latitudinal gradient, but instead, some of the populations with the largest snakes occurred near the core of the geographic range and some with the smallest occurred near the northern, western, and southern peripheries of the range. Males averaged 14% larger than females, although the degree of sexual size dimorphism varied between populations (range: 2%–25%). There was a weak trend for male body size to change in relation to temperature, whereas female body size did not. Our results indicate that relationships between climate and an ectotherm’s body size are more complicated than linear latitudinal clines and likely differ for males and females.


Sign in / Sign up

Export Citation Format

Share Document