scholarly journals Habituation to a Deterrent Plant Alkaloid Develops Faster in the Specialist Herbivore Helicoverpa assulta Than in Its Generalist Congener Helicoverpa armigera and Coincides with Taste Neuron Desensitisation

Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 21
Author(s):  
Dong-Sheng Zhou ◽  
Chen-Zhu Wang ◽  
Joop J. A. van Loon

The two closely related moth species, Helicoverpa armigera and H. assulta differ strongly in their degree of host-plant specialism. In dual-choice leaf disk assays, caterpillars of the two species that had been reared on standard artificial diet were strongly deterred by the plant-derived alkaloid strychnine. However, caterpillars of both species reared on artificial diet containing strychnine from neonate to the 5th instar were insensitive to this compound. Fifth instar caterpillars of H. assulta and 4th or 5th instars of H. armigera not exposed to strychnine before were subjected to strychnine-containing diet for 24 h, 36 h, 48 h, or 72 h. Whereas H. assulta displayed habituation to strychnine after 48 h, it took until 72 h for H. armigera to become habituated. Electrophysiological tests revealed that a deterrent-sensitive neuron in the medial sensillum styloconicum of both species displayed significantly reduced sensitivity to strychnine that correlated with the onset of habituation. We conclude that the specialist H. assulta habituated faster to strychnine than the generalist H. armigera and hypothesis that desensitization of deterrent-sensitive neurons contributed to habituation.

2021 ◽  
Vol 22 (11) ◽  
pp. 5941
Author(s):  
Abigail Ngugi-Dawit ◽  
Isaac Njaci ◽  
Thomas J.V. Higgins ◽  
Brett Williams ◽  
Sita R. Ghimire ◽  
...  

Pigeonpea [Cajanus cajan (L.) Millspaugh] is an economically important legume playing a crucial role in the semi-arid tropics. Pigeonpea is susceptible to Helicoverpa armigera (Hübner), which causes devastating yield losses. This pest is developing resistance to many commercially available insecticides. Therefore, crop wild relatives of pigeonpea, are being considered as potential sources of genes to expand the genetic base of cultivated pigeonpea to improve traits such as host plant resistance to pests and pathogens. Quantitative proteomic analysis was conducted using the tandem mass tag platform to identify differentially abundant proteins between IBS 3471 and ICPL 87 tolerant accession and susceptible variety to H. armigera, respectively. Leaf proteome were analysed at the vegetative and flowering/podding growth stages. H. armigera tolerance in IBS 3471 appeared to be related to enhanced defence responses, such as changes in secondary metabolite precursors, antioxidants, and the phenylpropanoid pathway. The development of larvae fed on an artificial diet with IBS 3471 lyophilised leaves showed similar inhibition with those fed on an artificial diet with quercetin concentrations with 32 mg/25 g of artificial diet. DAB staining (3,3’-diaminobenzidine) revealed a rapid accumulation of reactive oxygen species in IBS 3471. We conclude that IBS 3471 is an ideal candidate for improving the genetic base of cultivated pigeonpea, including traits for host plant resistance.


2016 ◽  
Vol 71 ◽  
pp. 49-57 ◽  
Author(s):  
Corinna Krempl ◽  
Theresa Sporer ◽  
Michael Reichelt ◽  
Seung-Joon Ahn ◽  
Hanna Heidel-Fischer ◽  
...  

2016 ◽  
Vol 107 (2) ◽  
pp. 188-199 ◽  
Author(s):  
G.H. Baker ◽  
C.R. Tann

AbstractThe cotton bollworm, Helicoverpa armigera, is a major pest of many agricultural crops in several countries, including Australia. Transgenic cotton, expressing a single Bt toxin, was first used in the 1990s to control H. armigera and other lepidopteran pests. Landscape scale or greater pest suppression has been reported in some countries using this technology. However, a long-term, broad-scale pheromone trapping program for H. armigera in a mixed cropping region in eastern Australia caught more moths during the deployment of single Bt toxin cotton (Ingard®) (1996–2004) than in previous years. This response can be attributed, at least in part, to (1) a precautionary cap (30% of total cotton grown, by area) being applied to Ingard® to restrict the development of Bt resistance in the pest, and (2) during the Ingard® era, cotton production greatly increased (as did that of another host plant, sorghum) and H. armigera (in particular the 3rd and older generations) responded in concert with this increase in host plant availability. However, with the replacement of Ingard® with Bollgard II® cotton (containing two different Bt toxins) in 2005, and recovery of the cotton industry from prevailing drought, H. armigera failed to track increased host-plant supply and moth numbers decreased. Greater toxicity of the two gene product, introduction of no cap on Bt cotton proportion, and an increase in natural enemy abundance are suggested as the most likely mechanisms responsible for the suppression observed.


2012 ◽  
Vol 103 (2) ◽  
pp. 171-181 ◽  
Author(s):  
G.H. Baker ◽  
C.R. Tann

AbstractTransgenic (Bt) cotton dominates Australian cotton production systems. It is grown to control feeding damage by lepidopteran pests such as Helicoverpa armigera. The possibility that these moths might become resistant to Bt remains a threat. Consequently, refuge crops (with no Bt) must be grown with Bt cotton to produce large numbers of Bt-susceptible moths to reduce the risk of resistance developing. A key assumption of the refuge strategy, that moths from different host plant origins mate at random, remains untested. During the period of the study reported here, refuge crops included pigeon pea, conventional cotton (C3 plants), sorghum or maize (C4 plants). To identify the relative contributions made by these (and perhaps other) C3 and C4 plants to populations of H. armigera in cotton landscapes, we measured stable carbon isotopes (δ13C) within individual moths captured in the field. Overall, 53% of the moths were of C4 origin. In addition, we demonstrated, by comparing the stable isotope signatures of mating pairs of moths, that mating is indeed random amongst moths of different plant origins (i.e. C3 and C4). Stable nitrogen isotope signatures (δ15N) were recorded to further discriminate amongst host plant origins (e.g. legumes from non-legumes), but such measurements proved generally unsuitable. Since 2010, maize and sorghum are no longer used as dedicated refuges in Australia. However, these plants remain very common crops in cotton production regions, so their roles as ‘unstructured’ refuges seem likely to be significant.


1998 ◽  
Vol 46 (3) ◽  
pp. 291 ◽  
Author(s):  
Mustapha F. A. Jallow ◽  
Myron P. Zalucki

We examined the effect of age-specific fecundity, mated status, and egg load on host-plant selection by Helicoverpa armigera under laboratory conditions. The physiological state of a female moth (number of mature eggs produced) greatly influences her host-plant specificity and propensity to oviposit (oviposition motivation). Female moths were less discriminating against cowpea (a low-ranked host) relative to maize (a high-ranked host) as egg load increased. Similarly, increased egg load led to a greater propensity to oviposit on both cowpea and maize. Distribution of oviposition with age of mated females peaked shortly after mating and declined steadily thereafter until death. Most mated females (88%) carried only a single spermat-ophore, a few females (12%) contained two. The significance of these findings in relation to host-plant selection by H. armigera, and its management, are discussed.


Sign in / Sign up

Export Citation Format

Share Document