scholarly journals The Fungus Metarhizium sp. BCC 4849 Is an Effective and Safe Mycoinsecticide for the Management of Spider Mites and Other Insect Pests

Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 42
Author(s):  
Rudsamee Wasuwan ◽  
Natnapha Phosrithong ◽  
Boonhiang Promdonkoy ◽  
Duangjai Sangsrakru ◽  
Chutima Sonthirod ◽  
...  

Five isolates of Metarhizium sp. were evaluated for their pathogenicity against the spider mite (Tetranychus truncatus Ehara) (Acari: Tetranychidae) and Metarhizium sp. BCC 4849 resulted in the highest mortality (82%) on the 5th day post-inoculation (DPI). Subsequent insect bioassay data indicated similar high virulence against five other insects: African red mites (Eutetranychus africanus Tucker) (Acari: Tetranychidae), bean aphid (Aphis craccivora Koch) (Hemiptera: Aphididae), cassava mealybug (Phenacoccus manihoti Matile-Ferrero) (Hemiptera: Pseudococcidae), sweet potato weevil (Cylas formicarius Fabricius) (Coleoptera: Brentidae), and oriental fruit fly (Bactrocera dorsalis Hendel) (Diptera: Tephritidae), at mortalities of 92–99%, on 3rd–6th DPI, and in laboratory conditions. The pathogenicity assay against E. africanus in hemp plants under greenhouse conditions indicated 85–100% insect mortality on 10th DPI using the fungus alone or in combination with synthetic acaricide. Genome sequencing of Metarhizium sp. BCC 4849 revealed the high abundance of proteins associated with zinc-, heme-, and iron-binding; oxidation-reduction; and transmembrane transport, implicating its versatile mode of interaction with the environment and adaptation to various ion homeostasis. The light and scanning electron microscopy indicated that at 24 h post inoculation (PI), adhesion and appressorial formation occurred, notably near the setae. Most infected mites had stopped moving and started dying by 48–72 h PI. Elongated hyphal bodies and oval blastospores were detected in the legs. At 96–120 h PI or longer, dense mycelia and conidial mass had colonized the interior and exterior of dead mites, primarily at the bottom than the upper part. The shelf-life study also indicated that conidial formulation combined with an oxygen-moisture absorber markedly enhanced the viability and germination after storage at 35 °C for four months. The fungus was tested as safe for humans and animals, according to our toxicological assays.

2020 ◽  
Vol 113 (5) ◽  
pp. 343-354 ◽  
Author(s):  
Issaka Zida ◽  
Souleymane Nacro ◽  
Rémy Dabiré ◽  
Irénée Somda

Abstract Fruit flies are significant insect pests, worldwide. Tephritid species diversity and their seasonal abundance were investigated over 2 yr (May 2017 to May 2019) in Western Burkina Faso. A mass trapping experiment consisting of 288 Tephri Trap types, operating with four types of parapheromones comprising methyl eugenol, terpinyl acetate, trimedlure, and cue lure and an insecticide (Dichlorvos), was used for attracting and killing insects. Plant formations including natural fallows, mango orchards, and agroforestry parks in each of the six study sites were selected for data collection. Twenty-nine tephritid species belonging to 10 genera were identified. Fourteen fruit fly species were identified for the first time in Burkina Faso. The genera Ceratitis MacLeay (Diptera : Tephritidae) and Dacus Fabricius (Diptera: Tephritidae) with, respectively, 14 and 7 species recorded were the most represented. The dominant species caught was the invasive Bactrocera dorsalis Hendel (Diptera: Tephritidae) followed by Ceratitis cosyra Walker (Diptera: Tephritidae) and Ceratitis silvestrii Bezzi (Diptera: Tephritidae). The fruit fly population density was very high during the rainy season, with peaks occurring in June or July. The fruit fly species were generally more abundant during the hot and rainy seasons than during the cold and dry seasons. The highest diversity was recorded in natural fallows, as compared with the mango orchards and agroforestry parks. Tephritid species found refuge in the mango orchards during the dry and cold periods. The results of that investigation may be used for developing a sustainable pest management strategy for commercial orchards.


2019 ◽  
Vol 19 (S2) ◽  
Author(s):  
Mahfuza Khan ◽  
Kajla Seheli ◽  
Md. Abdul Bari ◽  
Nahida Sultana ◽  
Shakil Ahmed Khan ◽  
...  

Abstract Background The Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), is an important polyphagous pest of horticultural produce. The sterile insect technique (SIT) is a proven control method against many insect pests, including fruit flies, under area-wide pest management programs. High quality mass-rearing process and the cost-effective production of sterile target species are important for SIT. Irradiation is reported to cause severe damage to the symbiotic community structure in the mid gut of fruit fly species, impairing SIT success. However, studies have found that target-specific manipulation of insect gut bacteria can positively impact the overall fitness of SIT-specific insects. Results Twelve bacterial genera were isolated and identified from B. dorsalis eggs, third instars larval gut and adults gut. The bacterial genera were Acinetobacter, Alcaligenes, Citrobacter, Pseudomonas, Proteus, and Stenotrophomonas, belonging to the Enterobacteriaceae family. Larval diet enrichment with the selected bacterial isolate, Proteus sp. was found to improve adult emergence, percentage of male, and survival under stress. However, no significant changes were recorded in B. dorsalis egg hatching, pupal yield, pupal weight, duration of the larval stage, or flight ability. Conclusions These findings support the hypothesis that gut bacterial isolates can be used in conjunction with SIT. The newly developed gel-based larval diet incorporated with Proteus sp. isolates can be used for large-scale mass rearing of B. dorsalis in the SIT program.


2018 ◽  
Vol 15 (2) ◽  
pp. 93 ◽  
Author(s):  
Yusup Hidayat ◽  
Muthia Riefka Fauziaty ◽  
Danar Dono

Chili peppers (Capsicum annuum), in their many varieties, constitute a culturally and economically important horticultural crop in a number of countries. The Indonesian cayenne large red chili (Capsicum annuum var. annuum) is used widely in Indonesia mainly in cooking. There have been reports of increased infestation of large red chili by insect pests, particularly fruit flies. The aim of this study was to investigate the effectiveness of five edible vegetable oils (palm oil, coconut oil, soybean oil, corn oil, and candlenut oil) and one non-edible vegetable oil (neem oil) in reducing landings, oviposition, and infestation by the Oriental fruit fly (Bactrocera dorsalis Hendel) in large red chili fruits. This lab-based experiment entailed exposure of large red chili fruits to 20 mature B. dorsalis females (14–21 days old) inside a 15-l plastic container. Six separate containers each held 10 large red chili fruits with a single oil treatment in each. Prior to exposure, each of the treated and control large red chili fruits was punctured once with a needle in order to create an opening for oviposition. Results indicate that the coconut oil formulation was most effective in preventing damage from B. dorsalis females, and reducing fruit fly landings, oviposition, and infestation.


Author(s):  
CM Ward ◽  
RA Aumann ◽  
MA Whitehead ◽  
K Nikolouli ◽  
G Leveque ◽  
...  

AbstractMass releases of sterilized male insects, in the frame of sterile insect technique programs, have helped suppress insect pest populations since the 1950s. In the major horticultural pests Bactrocera dorsalis, Ceratitis capitata, and Zeugodacus cucurbitae, a key phenotype white pupae (wp) has been used for decades to selectively remove females before releases, yet the gene responsible remained unknown. Here we use classical and modern genetic approaches to identify and functionally characterize causal wp− mutations in these distantly related fruit fly species. We find that the wp phenotype is produced by parallel mutations in a single, conserved gene. CRISPR/Cas9-mediated knockout of the wp gene leads to the rapid generation of novel white pupae strains in C. capitata and B. tryoni. The conserved phenotype and independent nature of the wp− mutations suggest that this technique can provide a generic approach to produce sexing strains in other major medical and agricultural insect pests.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Fazl Ullah ◽  
Muzammil Farooq ◽  
Sabyan Faris Honey ◽  
Naeem Zada

Abstract Background Fruit flies are important insect pests of horticultural crops. Pesticides used to control them which cause environmental and health hazards; therefore, other alternative sustainable management measures are required. Main body Successful implementation of an integrated pest management program, using biological control agents, needs synchronization of parasitoids with hosts selection and exposure time. The present study was conducted to assess the biological activity of the parasitoid species, Dirhinus giffardii (Silvestri) (Hymenoptera: Chalcididae), against the melon fruit fly, Zeugodacus cucurbitae (Coquillett), and the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), at different exposure durations (24, 48, and 72 h). The experiments were conducted under standard laboratory conditions. Significant differences in the parasitism rate of D. giffardii were observed for both species at different exposure durations. The maximum parasitism rate of D. giffardii (52.60 ± 2.84%) and (42.73 ± 2.74%) was observed at 48-h exposure period for Z. cucurbitae and B. dorsalis, respectively. Also, a comparison between both species showed a difference in parasitism rate at 24 and 48 h and a positive correlation between percent parasitism and exposure duration. Adult emergence of D. giffardii showed a maximum emergence rate from pupae of Z. cucurbitae (63.55 ± 4.02%) and B. dorsalis (51.61 ± 2.33%) at 10 days interval, respectively. However, the daily emergence of the parasitoid was not correlated to exposure duration in both species. The results of the present study may serve in the mass rearing of D. giffardii. Conclusion The biological activity of D. giffardii was maximum at 48 h of exposure for both fruit fly species, and this important information may improve the mass rearing technology of D. giffardii.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christopher M. Ward ◽  
Roswitha A. Aumann ◽  
Mark A. Whitehead ◽  
Katerina Nikolouli ◽  
Gary Leveque ◽  
...  

AbstractMass releases of sterilized male insects, in the frame of sterile insect technique programs, have helped suppress insect pest populations since the 1950s. In the major horticultural pests Bactrocera dorsalis, Ceratitis capitata, and Zeugodacus cucurbitae, a key phenotype white pupae (wp) has been used for decades to selectively remove females before releases, yet the gene responsible remained unknown. Here, we use classical and modern genetic approaches to identify and functionally characterize causal wp− mutations in these distantly related fruit fly species. We find that the wp phenotype is produced by parallel mutations in a single, conserved gene. CRISPR/Cas9-mediated knockout of the wp gene leads to the rapid generation of white pupae strains in C. capitata and B. tryoni. The conserved phenotype and independent nature of wp− mutations suggest this technique can provide a generic approach to produce sexing strains in other major medical and agricultural insect pests.


2011 ◽  
Vol 36 (5) ◽  
pp. 547-549
Author(s):  
Ying-gang DU ◽  
Hai-bo XIA ◽  
Jia-hua CHEN ◽  
Qing-e JI

Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 338
Author(s):  
Charity M. Wangithi ◽  
Beatrice W. Muriithi ◽  
Raphael Belmin

The invasive fruit fly Bactrocera dorsalis poses a major threat to the production and trade of mango in sub-Saharan Africa. Farmers devise different innovations to manage the pest in an attempt to minimize yield loss and production costs while maximizing revenues. Using survey data obtained from Embu County, Kenya, we analyzed farmers’ knowledge and perception as regards the invasive fruit fly, their innovations for the management of the pest, and the determinants of their adoption and dis-adoption decisions of recently developed and promoted integrated pest management (IPM) technologies for suppression of the pest. The results show that farmers consider fruit flies as a major threat to mango production (99%) and primarily depend on pesticides (90%) for the management of the pest. Some farmers (35%) however use indigenous methods to manage the pest. Though farmers possess good knowledge of different IPM strategies, uptake is relatively low. The regression estimates show that continued use of IPM is positively associated with the gender and education of the household head, size of a mango orchard, knowledge on mango pests, training, contact with an extension officer, and use of at least one non-pesticide practice for fruit fly management, while IPM dis-adoption was negatively correlated with the size of the mango orchard, practice score and use of indigenous innovations for fruit fly management. We recommend enhancing farmer′s knowledge through increased access to training programs and extension services for enhanced adoption of sustainable management practices for B. dorsalis.


Author(s):  
Peter A Follett ◽  
Fay E M Haynes ◽  
Bernard C Dominiak

Abstract Tephritid fruit flies are major economic pests for fruit production and are an impediment to international trade. Different host fruits are known to vary in their suitability for fruit flies to complete their life cycle. Currently, international regulatory standards that define the likely legal host status for tephritid fruit flies categorize fruits as a natural host, a conditional host, or a nonhost. For those fruits that are natural or conditional hosts, infestation rate can vary as a spectrum ranging from highly attractive fruits supporting large numbers of fruit flies to very poor hosts supporting low numbers. Here, we propose a Host Suitability Index (HSI), which divides the host status of natural and conditional hosts into five categories based on the log infestation rate (number of flies per kilogram of fruit) ranging from very poor (<0.1), poor (0.1–1.0), moderately good (1.0–10.0), good (10–100), and very good (>100). Infestation rates may be determined by field sampling or cage infestation studies. We illustrate the concept of this index using 21 papers that examine the host status of fruits in five species of polyphagous fruit flies in the Pacific region: Bactrocera tryoni Froggatt, Bactrocera dorsalis (Hendel), Bactrocera latifrons (Hendel), Zeugodacus cucurbitae (Coquillett), and Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). This general-purpose index may be useful in developing systems approaches that rely on poor host status, for determining surveillance and detection protocols for potential incursions, and to guide the appropriate regulatory response during fruit fly outbreaks.


Sign in / Sign up

Export Citation Format

Share Document