scholarly journals Analysis of Oscillating Combustion for NOx−Reduction in Pulverized Fuel Boilers

Inventions ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 9
Author(s):  
Nicklas Jolibois ◽  
Krasimir Aleksandrov ◽  
Manuela Hauser ◽  
Dieter Stapf ◽  
Helmut Seifert ◽  
...  

Thermal power plants in different fields are regularly adapted to the state-of-the-art emissions standards, applying “The Best Available Techniques Reference”. Since 2016 in the power plant area new, more stringent limits for power plant units with a thermal output of more than 300 MW operated with black coal are valid. Usually, in order to reach the new limits e.g., for NOX emissions, downstream reduction processes (Selective Non-Catalytic Reduction, SNCR or Selective Catalytic Reduction) are applied, which use of operating resources (essentially ammonia water) thereby increase. By the means of an experimentally validated process, by which pulverized fuel is fed by oscillation through a swirl burner into a pilot combustion chamber with a thermal output of 2.5 MW, nitrogen oxides can be reduced without further activities, for instance from 450 mg/mN3 in non-oscillation operation mode (0 Hz) to 280 mg/mN3 in oscillation operation mode (3.5 Hz), normalized to an O2–content of 6% each. These findings were patented in EP3084300. Particularly promising are the experiments which utilize oscillation of a large portion of the burn out air instead of the fuel in order to minimize the fatigue of the pulverized fuel oscillator, amongst others. Thereby, the nitrogen conversion rate, which describes the ratio of NOX to fuel nitrogen, including thermal NOX can be reduced from 26% for non-oscillation operation mode down to 16%. The present findings show that fuel oscillation alone is not sufficient to achieve nitrogen oxides concentrations below the legislative values. Therefore, a combination of different primary (and secondary) measures is required. This paper presents the experimental results for oscillating coal-dust firing. Furthermore, an expert model based on a multivariate regression is developed to evaluate the experimental results.

2020 ◽  
Vol 60 (3) ◽  
pp. 206-213
Author(s):  
Aliya Askarova ◽  
Pavel Šafařík ◽  
Aizhan Nugymanova ◽  
Saltanat Bolegenova ◽  
Valeriy Maximov ◽  
...  

This paper presents new results of computational experiments on the implementation of Overfire Air (OFA) technologies using an example of a combustion chamber of the BKZ-75 boiler of the Shakhtinskaya power plant (Shakhtinsk, Kazakhstan) burning high-ash Karaganda coal. The effect of mass air flow through special nozzles located above the burner level on the flow aerodynamics, temperature fields, concentration fields of carbon monoxide CO and nitrogen NO over the entire volume of the combustion chamber was studied. The studied characteristics were compared for various percentages of supplying additional air through OFA injectors: OFA is 0% (basic version), 10% and 18 %. It was shown that the installation of OFA injectors leads to a change in the field of the total velocity vector, temperature, and concentrations of carbon oxides and nitrogen. An increase in the percentage of air supplied through OFA injectors to 18% leads to a decrease in the concentrations of carbon monoxide CO by about 36% and nitrogen oxide NO by 25% compared with the base case. The obtained results will optimize the process of burning pulverized fuel in the combustion chamber of the BKZ-75 boiler, increase the efficiency of fuel burnout, reduce harmful emissions and introduce OFAtechnology at other coal-burning thermal power plants.


2012 ◽  
Vol 58 (4) ◽  
pp. 351-356
Author(s):  
Mincho B. Hadjiski ◽  
Lyubka A. Doukovska ◽  
Stefan L. Kojnov

Abstract Present paper considers nonlinear trend analysis for diagnostics and predictive maintenance. The subject is a device from Maritsa East 2 thermal power plant a mill fan. The choice of the given power plant is not occasional. This is the largest thermal power plant on the Balkan Peninsula. Mill fans are main part of the fuel preparation in the coal fired power plants. The possibility to predict eventual damages or wear out without switching off the device is significant for providing faultless and reliable work avoiding the losses caused by planned maintenance. This paper addresses the needs of the Maritsa East 2 Complex aiming to improve the ecological parameters of the electro energy production process.


Author(s):  
Ye. G. Polenok ◽  
S. A. Mun ◽  
L. A. Gordeeva ◽  
A. A. Glushkov ◽  
M. V. Kostyanko ◽  
...  

Introduction.Coal dust and coal fi ring products contain large amounts of carcinogenic chemicals (specifically benz[a]pyrene) that are different in influence on workers of coal mines and thermal power plants. Specific immune reactions to benz[a]pyrene therefore in these categories of workers can have specific features.Objective.To reveal features of antibodies specifi c to benz[a]pyrene formation in workers of coal mines and thermal power plants.Materials and methods.The study covered A and G class antibodies against benz[a]pyrene (IgA-Bp and IgG-Bp) in serum of 705 males: 213 donors of Kemerovo blood transfusion center (group 1, reference); 293 miners(group 2) and 199 thermal power plant workers (group 3). Benz[a]pyrene conjugate with bovine serum albumin as an adsorbed antigen was subjected to immune-enzyme assay.Results.IgA-Bp levels in the miners (Me = 2.7) did not differ from those in the reference group (Me = 2.9), but in the thermal power plant workers (Me = 3.7) were reliably higher than those in healthy men and in the miners (p<0.0001). Levels of IgG-Bp in the miners (Me = 5.0) appeared to be lower than those in the reference group (Me = 6.4; (p = 0.05). IgG-Bb level in the thermal power plantworkers (Me = 7.4) exceeded the parameters in the healthy donors and the miners (p<0.0001). Non-industrial factors (age and smoking) appeared tohave no influence on specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers.Conclusions.Specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers are characterized by peculiarities: the miners demonstrate lower levels of class A serum antibodies to benz[a]pyrene; the thermal power plant workers present increased serum levels of class G antibodies to benz[a]pyrene. These peculiarities result from only the occupational features, but do not depend on such factors as age, smoking and length of service at hazardous production. It is expedient to study specific immune reactions to benz[a]pyrene in workers of coal mines and thermal power plants, to evaluate individual oncologic risk and if malignancies occur.


2011 ◽  
Vol 383-390 ◽  
pp. 4130-4133
Author(s):  
Song Feng Tian ◽  
Wei Wang ◽  
Yun Feng Tian ◽  
Shuang Bai Liu

There are many kinds of energy loss indicators in power plant, and there are some relevance among the various indicators. So extraction of the key indicators plays an important role between in energy loss analysis of power plants and optimal management of thermal power plants. Based on the characteristics of these indicators, the idea of rough sets was applied to the energy loss analysis of thermal power plants, then we proposed a new algorithm -- use fuzzy C means algorithm (FCM) to discrete cluster the energy loss indicators of thermal power plant, and then analysis simplified the results with algorithm Johnson. Real experiments (Chaozhou 1,2 and Ningde 3,4 assembling units which of the same type in the SIS system under the THA working condition)’ results had proved high accuracy and valuable of the algorithm.


Author(s):  
I.A. Volchyn ◽  
O.M. Kolomiets ◽  
S.V. Mezin ◽  
A.O. Yasynetskyi

The need to reduce emissions of pollutants, in particular nitrogen oxides, as required by regulations in Ukraine, requires the use of modern technologies and methods for waste gas treatment at industrial enterprises. This is especially true of thermal power plants, which are powerful sources of nitrogen oxide emissions. The technological part of the wet or semi-dry method of purification is the area for the oxidation of nitrogen oxides to obtain easily soluble compounds. The paper presents the results of a study of the process of ozone oxidation of nitrogen oxides in a chemical reactor. Data for the analysis of the process were obtained by performing physical experiments on a laboratory installation and related calculations on a mathematical model. Studies of the oxidation process have shown that the required amount of ozone depends not only on the content of nitrogen monoxide, but also on the content of nitrogen dioxide. The process of conversion of nitrogen monoxide to a satisfactory level occurs at the initial value of the molar ratio of ozone to nitrogen monoxide in the range of 1.5…2. The conversion efficiency of nitrogen monoxide reaches 90% at a gas temperature less than 100 °C. To achieve high conversion efficiency at gas temperatures above 100 °C, it is necessary to increase the initial ozone content when the molar ratio exceeds 2. The analysis shows that the conversion efficiency of nitric oxide largely depends on the residence time of the gas mixture in the reaction zone. Due to lack of time under certain conditions, the efficiency decreases by approximately 46%. To increase it, it is necessary to accelerate the rate of oxidation reactions due to better mixing of gases by turbulence of the flow in the oxidizing reactor. Bibl. 6, Fig. 6, Tab. 3.


Author(s):  
Kajori Parial ◽  
S. Mukherjee ◽  
A. R. Ghosh ◽  
D. Sengupta

Coal combustion in thermal power plants releases ash. Ash is reported to cause different adverse health hazards in humans and other organisms. Owing to the presence of radionuclides, it is also considered as a potential radiation hazard. In this study, based on the surface radiation measurements and relevant ancillary data, expected radiation risk zones were identified with regard to the human population residing near the Thermal Power Plant. With population density as the risk determining criteria, about 20% of the study area was at &lsquo;High&rsquo; risk and another 20% of the study area was at &lsquo;Low&rsquo; risk zone. The remaining 60% was under medium risk zone. Based on the findings remedial measures which may be adopted have been suggested.


Akustika ◽  
2021 ◽  
pp. 133-137
Author(s):  
Vladimir Tupov ◽  
Vitaliy Skvortsov

The power equipment of thermal power plants is a source of noise to the surrounding area. One of the sources of noise for the surrounding area are gas distribution points (GDP) of thermal power plants (TPP) and district thermal power plants (RTS). Noise from gas distribution points may exceed sanitary standards at the border of the sanitary protection zone. The article shows that the radiated noise from gas distribution points depends on the power of the thermal power plant (natural gas consumption) and the type of valves. Three types of valves used in gas distribution points are considered. Formulas are obtained for calculating the width of the sanitary protection zone for gas distribution points for thermal stations, depending on the consumption of natural gas (electric power of the thermal power plant) and the type of valve. It is shown that, depending on the valve used, the noise level at the border of the sanitary protection zone can either meet sanitary standards or exceed them. This allows at the design stage to select the required type of valve or to determine mitigation measures from hydraulic fracturing.


Author(s):  
Suchismita Satapathy

All companies are dependent on their raw material providers. The same applies in the case of thermal power plants. The major raw material for a thermal power plant is the coal. There are a lot of companies which in turn provide this coal to the thermal power plant. Some of these companies are international; some are local, whereas the others are localized. The thermal power plants look into all the aspects of the coal providing company, before settling down for a deal. Some people are specifically assigned to the task of managing the supply chain. The main motive is to optimize the whole process and achieve higher efficiency. There are a lot of things which a thermal power plant looks into before finalizing a deal, such as the price, quality of goods, etc. Thus, it is very important for the raw material providers to understand each and every aspect of the demands of the thermal power plant. A combination of three methods—Delphi, SWARA, and modified SWARA—has been applied to a list of factors, which has later been ranked according to the weight and other relevant calculations.


Author(s):  
M Stöhr ◽  
H Schütz ◽  
H Krüger

Power plant operators in Germany, Europe and other countries are reducing flue gas NOx emissions of large and small power plants to meet air quality regulations for the population and the environment. Beginning with the environmental impact, the use of different techniques for NOx reduction and experience with these techniques is given.


Author(s):  
Moritz Hübel ◽  
Jens Hinrich Prause ◽  
Conrad Gierow ◽  
Egon Hassel ◽  
Raphael Wittenburg ◽  
...  

The increasing share of fluctuating renewable energy sources leads to changing requirements for conventional power plants. The changing characteristics of the residual load requires the conventional fleet to operate with higher load gradients, lower minimum load at improved efficiency levels as well as faster start-ups and provision of ancillary services. Despite the requirements from the electricity market, the value of improving those flexibility parameters is hard to evaluate for power plant operators. In order to quantify the additional benefit that can be achieved by improving flexibility parameters on a certain power plant in a changing market environment, an adjustable load dispatch model has developed for that purpose. Using past electricity market data, the model is validated for typical coal and a typical gas fired power plants by reproducing their operational schedule. In the next step, the model is used to apply parameter changes to the power plants specifications and economic effects are demonstrated. General statements are derived on which flexibility parameter needs to be improved on each power plant type. Furthermore, specific economic evaluations are shown for the reference power plants in order to present the ability of the developed tool to support investment decisions for modernization projects of existing power plants.


Sign in / Sign up

Export Citation Format

Share Document