scholarly journals Failing Heart Transplants and Rejection—A Cellular Perspective

2021 ◽  
Vol 8 (12) ◽  
pp. 180
Author(s):  
Maria Hurskainen ◽  
Olli Ainasoja ◽  
Karl B. Lemström

The median survival of patients with heart transplants is relatively limited, implying one of the most relevant questions in the field—how to expand the lifespan of a heart allograft? Despite optimal transplantation conditions, we do not anticipate a rise in long-term patient survival in near future. In order to develop novel strategies for patient monitoring and specific therapies, it is critical to understand the underlying pathological mechanisms at cellular and molecular levels. These events are driven by innate immune response and allorecognition driven inflammation, which controls both tissue damage and repair in a spatiotemporal context. In addition to immune cells, also structural cells of the heart participate in this process. Novel single cell methods have opened new avenues for understanding the dynamics driving the events leading to allograft failure. Here, we review current knowledge on the cellular composition of a normal heart, and cellular mechanisms of ischemia-reperfusion injury (IRI), acute rejection and cardiac allograft vasculopathy (CAV) in the transplanted hearts. We highlight gaps in current knowledge and suggest future directions, in order to improve cellular and molecular understanding of failing heart allografts.

2003 ◽  
Vol 284 (1) ◽  
pp. G15-G26 ◽  
Author(s):  
Hartmut Jaeschke

Ischemia-reperfusion injury is, at least in part, responsible for the morbidity associated with liver surgery under total vascular exclusion or after liver transplantation. The pathophysiology of hepatic ischemia-reperfusion includes a number of mechanisms that contribute to various degrees in the overall injury. Some of the topics discussed in this review include cellular mechanisms of injury, formation of pro- and anti-inflammatory mediators, expression of adhesion molecules, and the role of oxidant stress during the inflammatory response. Furthermore, the roles of nitric oxide in preventing microcirculatory disturbances and as a substrate for peroxynitrite formation are reviewed. In addition, emerging mechanisms of protection by ischemic preconditioning are discussed. On the basis of current knowledge, preconditioning or pharmacological interventions that mimic these effects have the greatest potential to improve clinical outcome in liver surgery involving ischemic stress and reperfusion.


2018 ◽  
Vol 315 (1) ◽  
pp. H150-H158 ◽  
Author(s):  
Marie Hauerslev ◽  
Sivagowry Rasalingam Mørk ◽  
Kasper Pryds ◽  
Hussain Contractor ◽  
Jan Hansen ◽  
...  

Remote ischemic conditioning (RIC) protects against sustained myocardial ischemia. Because of overlapping mechanisms, this protection may be altered by glyceryl trinitrate (GTN), which is commonly used in the treatment of patients with chronic ischemic heart disease. We investigated whether long-term GTN treatment modifies the protection by RIC in the rat myocardium and human endothelium. We studied infarct size (IS) in rat hearts subjected to global ischemia-reperfusion (I/R) in vitro and endothelial function in healthy volunteers subjected to I/R of the upper arm. In addition to allocated treatment, rats were coadministered with reactive oxygen species (ROS) or nitric oxide (NO) scavengers. Rats and humans were randomized to 1) control, 2) RIC, 3) GTN, and 4) GTN + RIC. In protocols 3 and 4, rats and humans underwent long-term GTN treatment for 7 consecutive days, applied subcutaneously or 2 h daily transdermally. In rats, RIC and long-term GTN treatment reduced mean IS (18 ± 12%, P = 0.007 and 15 ± 5%, P = 0.002) compared with control (35 ± 13%). RIC and long-term GTN treatment in combination did not reduce IS (29 ± 12%, P = 0.55 vs. control). ROS and NO scavengers both attenuated IS reduction by RIC and long-term GTN treatment. In humans, I/R reduced endothelial function ( P = 0.01 vs. baseline). Separately, RIC and long-term GTN prevented the reduction in endothelial function caused by I/R; given in combination, prevention was lost. RIC and long-term GTN treatment both protect against rat myocardial and human endothelial I/R injury through ROS and NO-dependent mechanisms. However, when given in combination, RIC and long-term GTN treatment fail to confer protection. NEW & NOTEWORTHY Remote ischemic conditioning (RIC) and long-term glyceryl trinitrate (GTN) treatment protect against ischemia-reperfusion injury in both human endothelium and rat myocardium. However, combined application of RIC and long-term GTN treatment abolishes the individual protective effects of RIC and GTN treatment on ischemia-reperfusion injury, suggesting an interaction of clinical importance.


2009 ◽  
Vol 35 (2) ◽  
pp. 304-312 ◽  
Author(s):  
Niels P. van der Kaaij ◽  
Jolanda Kluin ◽  
Jack J. Haitsma ◽  
Michael A. den Bakker ◽  
Bart N. Lambrecht ◽  
...  

2018 ◽  
Vol 315 (6) ◽  
pp. F1714-F1719 ◽  
Author(s):  
Pauline Erpicum ◽  
Pascal Rowart ◽  
Jean-Olivier Defraigne ◽  
Jean-Marie Krzesinski ◽  
François Jouret

Renal segmental metabolism is reflected by the complex distribution of the main energy pathways along the nephron, with fatty acid oxidation preferentially used in the cortex area. Ischemia/reperfusion injury (IRI) is due to the restriction of renal blood flow, rapidly leading to a metabolic switch toward anaerobic conditions. Subsequent unbalance between energy demand and oxygen/nutrient delivery compromises kidney cell functions, resulting in a complex inflammatory cascade including the production of reactive oxygen species (ROS). Renal IRI especially involves lipid accumulation. Lipid peroxidation is one of the major events of ROS-associated tissue injury. Here, we briefly review the current knowledge of renal cell lipid metabolism in normal and ischemic conditions. Next, we focus on renal lipid-associated injury, with emphasis on its mechanisms and consequences during the course of IRI. Finally, we discuss preclinical observations aiming at preventing and/or attenuating lipid-associated IRI.


2018 ◽  
Vol 315 (3) ◽  
pp. H429-H447 ◽  
Author(s):  
Andrew C. Bulmer ◽  
Bhavisha Bakrania ◽  
Eugene F. Du Toit ◽  
Ai-Ching Boon ◽  
Paul J. Clark ◽  
...  

Bilirubin, a potentially toxic catabolite of heme and indicator of hepatobiliary insufficiency, exhibits potent cardiac and vascular protective properties. Individuals with Gilbert’s syndrome (GS) may experience hyperbilirubinemia in response to stressors including reduced hepatic bilirubin excretion/increased red blood cell breakdown, with individuals usually informed by their clinician that their condition is of little consequence. However, GS appears to protect from all-cause mortality, with progressively elevated total bilirubin associated with protection from ischemic heart and chronic obstructive pulmonary diseases. Bilirubin may protect against these diseases and associated mortality by reducing circulating cholesterol, oxidative lipid/protein modifications, and blood pressure. In addition, bilirubin inhibits platelet activation and protects the heart from ischemia-reperfusion injury. These effects attenuate multiple stages of the atherosclerotic process in addition to protecting the heart during resultant ischemic stress, likely underpinning the profound reduction in cardiovascular mortality in hyperbilirubinemic GS. This review outlines our current knowledge of and uses for bilirubin in clinical medicine and summarizes recent progress in revealing the physiological importance of this poorly understood molecule. We believe that this review will be of significant interest to clinicians, medical researchers, and individuals who have GS.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Giang Tong ◽  
Nalina N. A. von Garlen ◽  
Sylvia J. Wowro ◽  
Phuong D. Lam ◽  
Jana Krech ◽  
...  

Introduction. Fever is frequently observed after acute ischemic events and is associated with poor outcome and higher mortality. Targeted temperature management (TTM) is recommended for neuroprotection in comatose cardiac arrest survivors, but pyrexia after rewarming is proven to be detrimental in clinical trials. However, the cellular mechanisms and kinetics of post-TTM rebound pyrexia remain to be elucidated. Therefore, we investigated the effects of cooling and post-TTM pyrexia on the inflammatory response and apoptosis in a cardiomyocyte ischemia-reperfusion (IR) injury model. Methods. HL-1 cardiomyocytes were divided into the following groups to investigate the effect of oxygen-glucose deprivation/reperfusion (OGD/R), hypothermia (33.5°C), and pyrexia (40°C): normoxia controls maintained at 37°C and warmed to 40°C, OGD/R groups maintained at 37°C and cooled to 33.5°C for 24 h with rewarming to 37°C, and OGD/R pyrexia groups further warmed from 37 to 40°C. Caspase-3 and RBM3 were assessed by Western blot and TNF-α, IL-6, IL-1β, SOCS3, iNOS, and RBM3 transcriptions by RT-qPCR. Results. OGD-induced oxidative stress (iNOS) in cardiomyocytes was attenuated post-TTM by cooling. Cytokine transcriptions were suppressed by OGD, while reperfusion induced significant TNF-α transcription that was exacerbated by cooling. Significant inductions of TNF-α, IL-6, IL-1β, and SOCS3 were observed in noncooled, but not in cooled and rewarmed, OGD/R-injured cardiomyocytes. Further warming to pyrexia induced a sterile inflammatory response in OGD/R-injured groups that was attenuated by previous cooling, but no inflammation was observed in pyrexic normoxia groups. Moreover, cytoprotective RBM3 expression was induced by cooling but suppressed by pyrexia, correlating with apoptotic caspase-3 activation. Conclusion. Our findings show that maintaining a period of post-TTM “therapeutic normothermia” is effective in preventing secondary apoptosis-driven myocardial cell death, thus minimizing the infarct area and further release of mediators of the innate sterile inflammatory response after acute IR injury.


Sign in / Sign up

Export Citation Format

Share Document