scholarly journals Does Hepatic Steatosis Influence the Detection Rate of Metastases in the Hepatobiliary Phase of Gadoxetic Acid-Enhanced MRI?

2020 ◽  
Vol 10 (1) ◽  
pp. 98
Author(s):  
Ingo G. Steffen ◽  
Thomas Weissmann ◽  
Jan Holger Rothe ◽  
Dominik Geisel ◽  
Sascha S. Chopra ◽  
...  

The aim of this exploratory study was to evaluate the influence of hepatic steatosis on the detection rate of metastases in gadoxetic acid-enhanced liver magnetic resonance imaging (MRI). A total of 50 patients who underwent gadoxetic acid-enhanced MRI (unenhanced T1w in- and opposed-phase, T2w fat sat, unenhanced 3D-T1w fat sat and 3-phase dynamic contrast-enhanced (uDP), 3D-T1w fat sat hepatobiliary phase (HP)) were retrospectively included. Two blinded observers (O1/O2) independently assessed the images to determine the detection rate in uDP and HP. The hepatic signal fat fraction (HSFF) was determined as the relative signal intensity reduction in liver parenchyma from in- to opposed-phase images. A total of 451 liver metastases were detected (O1/O2, n = 447/411). O1/O2 detected 10.9%/9.3% of lesions exclusively in uDP and 20.2%/15.5% exclusively in HP. Lesions detected exclusively in uDP were significantly associated with a larger HSFF (area under curve (AUC) of receiver operating characteristic (ROC) analysis, 0.93; p < 0.001; cutoff, 41.5%). The exclusively HP-positive lesions were significantly associated with a smaller diameter (ROC-AUC, 0.82; p < 0.001; cutoff, 5 mm) and a smaller HSFF (ROC-AUC, 0.61; p < 0.001; cutoff, 13.3%). Gadoxetic acid imaging has the advantage of detecting small occult metastatic liver lesions in the HP. However, using non-optimized standard fat-saturated 3D-T1w protocols, severe steatosis (HSFF > 30%) is a potential pitfall for the detection of metastases in HP.

2020 ◽  
Vol 93 (1112) ◽  
pp. 20190989
Author(s):  
Cathryn L Hui ◽  
Marcela Mautone

A variety of patterns of enhancement of liver lesions and liver parenchyma is observed in the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI. It is becoming increasingly apparent that many lesions may exhibit HBP enhancement. Much of the literature regarding the role of gadoxetic acid-enhanced MRI in characterising liver lesions is dichotomous, focusing on whether lesions are enhancing or non-enhancing in the HBP, rather than examining the patterns of enhancement. We provide a pattern-based description of HBP enhancement of liver parenchyma and of liver lesions. The role of OATP1B3 transporters, hepatocyte function and lesion composition in influencing patterns of HBP hyperintensity are discussed.


Liver Cancer ◽  
2021 ◽  
pp. 1-14
Author(s):  
Tomoko Aoki ◽  
Naoshi Nishida ◽  
Kazuomi Ueshima ◽  
Masahiro Morita ◽  
Hirokazu Chishina ◽  
...  

<b><i>Introduction:</i></b> Immune checkpoint inhibitors (ICIs) are promising agents for the treatment of hepatocellular carcinoma (HCC). However, the establishment of noninvasive measure that could predict the response to ICIs is challenging. This study aimed to evaluate tumor responses to ICIs using the hepatobiliary phase of gadolinium-ethoxybenzyl-diethylenetriamine (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI), which was shown to reflect Wnt/β-catenin activating mutation. <b><i>Methods:</i></b> A total of 68 intrahepatic HCC nodules from 18 patients with unresectable HCC and Child-Pugh class A liver function who received anti-programmed cell death 1 (PD-1)/programmed death-ligand 1 (PD-L1) monotherapy were enrolled in this study. All patients had viable intrahepatic lesions evaluable using the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI within the 6 months prior to the treatment. The relative enhancement ratio was calculated, and the time to nodular progression (TTnP) defined as 20% or more increase in each nodule was compared between higher or hypo-enhancement HCC nodules. Then, the progression-free survival (PFS) and objective response rate (ORR) per Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) were compared between patients with and without HCC nodules with higher enhancement on hepatobiliary phase images. <b><i>Results:</i></b> The median PFS was 2.7 (95% confidence interval [CI]: 1.4–4.0) months in patients with HCC nodules with higher enhancement (<i>n</i> = 8) and 5.8 (95% CI: 0.0–18.9) months in patients with hypointense HCC nodules (<i>n</i> = 10) (<i>p</i> = 0.007). The median TTnP of HCC nodules with higher enhancement (<i>n</i> = 23) was 1.97 (95% CI: 1.86–2.07) months and that of hypointense HCC nodules (<i>n</i> = 45) was not reached (<i>p</i> = 0.003). The ORR was 12.5% (1/8) versus 30.0% (3/10); the disease control rate was 37.5% (3/8) versus 70.0% (7/10), respectively, in patients with or without higher enhancement intrahepatic HCC nodules. <b><i>Conclusion:</i></b> The TTnP on HCC nodules with higher enhancement and the median PFS in patients who carried higher enhancement intrahepatic HCC nodules were significantly shorter than those in hypointense HCC nodules with anti-PD-1/PD-L1 monotherapy. The intensity of the nodule on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI is a promising imaging biomarker for predicting unfavorable response with anti-PD-1/PD-L1 monotherapy in patients with HCC.


2021 ◽  
pp. 028418512110141
Author(s):  
San-Yuan Dong ◽  
Yu-Tao Yang ◽  
Wen-Tao Wang ◽  
Shuo Zhu ◽  
Wei Sun ◽  
...  

Background Gadoxetic acid-enhanced magnetic resonance imaging (MRI) has been widely used in clinical practice. However, scientific evidence is lacking for recommending a particular sequence for measuring tumor size. Purpose To retrospectively compare the size of hepatocellular carcinoma (HCC) measured on different gadoxetic acid-enhanced MRI sequences using pathology as a reference. Material and Methods A total of 217 patients with single HCC who underwent gadoxetic acid-enhanced MRI before surgery were included. The size of the HCC was measured by two abdominal radiologists independently on the following sequences: T1-weighted; T2-weighted; b-500 diffusion-weighted imaging (DWI); and arterial, portal venous, transitional, and hepatobiliary phases. Tumor size measured on MRI was compared with pathological size by using Pearson correlation coefficient, independent-sample t test, and Bland–Altman plot. Agreement between two readers was evaluated with intraclass correlation coefficient (ICC). Results Correlation between the MR images and pathology was high for both readers (0.899–0.955). Absolute error between MRI and pathologic assessment was lowest on hepatobiliary phase images for both readers (reader 1, 2.8±4.2 mm; reader 2, 3.2±3.4 mm) and highest on arterial phase images for reader 1 (4.9±4.4 mm) and DWI phase images for reader 2 (5.1±4.9 mm). Absolute errors were significantly different for hepatobiliary phase compared with other sequences for both readers (reader 1, P≤0.012; reader 2, P≤0.037). Inter-reader agreements for all sequence measurements were strong (0.971–0.997). Conclusion The performance of gadoxetic acid-enhanced MRI sequences varied with HCC size, and the hepatobiliary phase may be optimal among these sequences.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Bardia Moosavi ◽  
Anuradha S. Shenoy-Bhangle ◽  
Leo L. Tsai ◽  
Robert Reuf ◽  
Koenraad J. Mortele

Abstract Background To evaluate the added value of the hepatobiliary (HPB) phase in gadoxetic acid-enhanced magnetic resonance imaging (MRI) in characterizing newly discovered indeterminate focal liver lesions in non-cirrhotic patients. Results One-hundred and twenty-five non-cirrhotic patients (median age, 46 years; range, 20–85 years; 100 females) underwent gadoxetic acid-enhanced MRI, including the 20-min delayed HPB phase, for characterization of newly discovered focal liver lesions. Images were independently evaluated by two blinded, board-certified abdominal radiologists (R1 and R2) who characterized liver lesions without and with assessment of the HPB phase images in two separate readout sessions. Confidence in diagnosis was scored on a scale from 0 to 3. Inter-observer agreement was assessed using Cohen κ statistics. Change in diagnosis and confidence in diagnosis were evaluated by Wilcoxon signed rank test. There was no significant change in diagnosis before and after evaluation of the HPB phase for both readers (p = 1.0 for R1; p = 0.34 for R2). Confidence in diagnosis decreased from average 2.8 ± 0.45 to 2.6 ± 0.59 for R1 and increased from 2.6 ± 0.83 to 2.8 ± 0.46 for R2. Change in confidence was only statistically significant for R1 (p = 0.003) but not significant for R2 (p = 0.49). Inter-reader agreement in diagnosis was good without (k = 0.66) and with (k = 0.75) inclusion of the HPB phase images. Conclusions The added information obtained from the HPB phase of gadoxetic acid-enhanced MRI does not change the diagnosis or increase confidence in diagnosis when evaluating new indeterminate focal liver lesions in non-cirrhotic patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aboelyazid Elkilany ◽  
Uli Fehrenbach ◽  
Timo Alexander Auer ◽  
Tobias Müller ◽  
Wenzel Schöning ◽  
...  

AbstractThe implementation of radiomics in radiology is gaining interest due to its wide range of applications. To develop a radiomics-based model for classifying the etiology of liver cirrhosis using gadoxetic acid-enhanced MRI, 248 patients with a known etiology of liver cirrhosis who underwent 306 gadoxetic acid-enhanced MRI examinations were included in the analysis. MRI examinations were classified into 6 groups according to the etiology of liver cirrhosis: alcoholic cirrhosis, viral hepatitis, cholestatic liver disease, nonalcoholic steatohepatitis (NASH), autoimmune hepatitis, and other. MRI examinations were randomized into training and testing subsets. Radiomics features were extracted from regions of interest segmented in the hepatobiliary phase images. The fivefold cross-validated models (2-dimensional—(2D) and 3-dimensional—(3D) based) differentiating cholestatic cirrhosis from noncholestatic etiologies had the best accuracy (87.5%, 85.6%), sensitivity (97.6%, 95.6%), predictive value (0.883, 0.877), and area under curve (AUC) (0.960, 0.910). The AUC was larger in the 2D-model for viral hepatitis, cholestatic cirrhosis, and NASH-associated cirrhosis (P-value of 0.05, 0.05, 0.87, respectively). In alcoholic cirrhosis, the AUC for the 3D model was larger (P = 0.01). The overall intra-class correlation coefficient (ICC) estimates and their 95% confident intervals (CI) for all features combined was 0.68 (CI 0.56–0.87) for 2D and 0.71 (CI 0.61–0.93) for 3D measurements suggesting moderate reliability. Radiomics-based analysis of hepatobiliary phase images of gadoxetic acid-enhanced MRI may be a promising noninvasive method for identifying the etiology of liver cirrhosis with better performance of the 2D- compared with the 3D-generated models.


2013 ◽  
Vol 72 (3) ◽  
pp. 640-645 ◽  
Author(s):  
Jeongjin Lee ◽  
Kyoung Won Kim ◽  
So Yeon Kim ◽  
Bohyoung Kim ◽  
So Jung Lee ◽  
...  

Medicine ◽  
2017 ◽  
Vol 96 (29) ◽  
pp. e7278 ◽  
Author(s):  
Seung Kak Shin ◽  
Yun Soo Kim ◽  
Seung Joon Choi ◽  
Young Sup Shim ◽  
Dong Hae Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document