scholarly journals Evaluation of Regional Pulmonary Ventilation in Spontaneously Breathing Patients with Idiopathic Pulmonary Fibrosis (IPF) Employing Electrical Impedance Tomography (EIT): A Pilot Study from the European IPF Registry (eurIPFreg)

2021 ◽  
Vol 10 (2) ◽  
pp. 192
Author(s):  
Ekaterina Krauss ◽  
Daniel van der Beck ◽  
Isabel Schmalz ◽  
Jochen Wilhelm ◽  
Silke Tello ◽  
...  

Objectives: In idiopathic pulmonary fibrosis (IPF), alterations in the pulmonary surfactant system result in an increased alveolar surface tension and favor repetitive alveolar collapse. This study aimed to assess the usefulness of electrical impedance tomography (EIT) in characterization of regional ventilation in IPF. Materials and methods: We investigated 17 patients with IPF and 15 healthy controls from the University of Giessen and Marburg Lung Center (UGMLC), Germany, for differences in the following EIT parameters: distribution of ventilation (TID), global inhomogeneity index (GI), regional impedance differences through the delta of end-expiratory lung impedance (dEELI), differences in surface of ventilated area (SURF), as well as center of ventilation (CG) and intratidal gas distribution (ITV). These parameters were assessed under spontaneous breathing and following a predefined escalation protocol of the positive end-expiratory pressure (PEEP), applied through a face mask by an intensive care respirator (EVITA, Draeger, Germany). Results: Individual slopes of dEELI over the PEEP increment protocol were found to be highly significantly increased in both groups (p < 0.001) but were not found to be significantly different between groups. Similarly, dTID slopes were increasing in response to PEEP, but this did not reach statistical significance within or between groups. Individual breathing patterns were very heterogeneous. There were no relevant differences of SURF, GI or CGVD over the PEEP escalation range. A correlation of dEELI to FVC, BMI, age, or weight did not forward significant results. Conclusions: In this study, we did see a significant increase in dEELI and a non-significant increase in dTID in IPF patients as well as in healthy controls in response to an increase of PEEP under spontaneous breathing. We propose the combined measurements of EIT and lung function to assess regional lung ventilation in spontaneously breathing subjects.

2019 ◽  
Vol 64 (4) ◽  
pp. 517-525 ◽  
Author(s):  
Martin Lehmann ◽  
Beatrice Oehler ◽  
Jonas Zuber ◽  
Uwe Malzahn ◽  
Thorsten Walles ◽  
...  

2012 ◽  
Vol 116 (6) ◽  
pp. 1227-1234 ◽  
Author(s):  
Oliver C. Radke ◽  
Thomas Schneider ◽  
Axel R. Heller ◽  
Thea Koch

Background Positive-pressure ventilation causes a ventral redistribution of ventilation. Spontaneous breathing during general anesthesia with a laryngeal mask airway could prevent this redistribution of ventilation. We hypothesize that, compared with pressure-controlled ventilation, spontaneous breathing and pressure support ventilation reduce the extent of the redistribution of ventilation as detected by electrical impedance tomography. Methods The study was a randomized, three-armed, observational, clinical trial without blinding. With approval from the local ethics committee, we enrolled 30 nonobese patients without severe cardiac or pulmonary comorbidities who were scheduled for elective orthopedic surgery. All of the procedures were performed under general anesthesia with a laryngeal mask airway and a standardized anesthetic regimen. The center of ventilation (primary outcome) was calculated before the induction of anesthesia (AWAKE), after the placement of the laryngeal mask airway (BEGIN), before the end of anesthesia (END), and after arrival in the postanesthesia care unit (PACU). Results The center of ventilation during anesthesia (BEGIN) was higher than baseline (AWAKE) in both the pressure-controlled and pressure support ventilation groups (pressure control: 55.0 vs. 48.3, pressure support: 54.7 vs. 48.8, respectively; multivariate analysis of covariance, P &lt; 0.01), whereas the values in the spontaneous breathing group remained at baseline levels (47.9 vs. 48.5). In the postanesthesia care unit, the center of ventilation had returned to the baseline values in all groups. No adverse events were recorded. Conclusions Both pressure-controlled ventilation and pressure support ventilation induce a redistribution of ventilation toward the ventral region, as detected by electrical impedance tomography. Spontaneous breathing prevents this redistribution.


Author(s):  
Liegina Silveira Marinho ◽  
Andrea Nobrega Cirino Nogueira Da Nobrega Cirino Nogueira ◽  
Juliana Arcanjo Lino ◽  
Gabriela De Carvalho Gomes Frota ◽  
Renata Dos Santos Vasconcelos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document