scholarly journals Impact of four different recumbencies on the distribution of ventilation in conscious or anaesthetized spontaneously breathing beagle dogs: An electrical impedance tomography study

PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0183340 ◽  
Author(s):  
Tamas D. Ambrisko ◽  
Johannes P. Schramel ◽  
Ulrike Auer ◽  
Yves P. S. Moens
2021 ◽  
Vol 10 (2) ◽  
pp. 192
Author(s):  
Ekaterina Krauss ◽  
Daniel van der Beck ◽  
Isabel Schmalz ◽  
Jochen Wilhelm ◽  
Silke Tello ◽  
...  

Objectives: In idiopathic pulmonary fibrosis (IPF), alterations in the pulmonary surfactant system result in an increased alveolar surface tension and favor repetitive alveolar collapse. This study aimed to assess the usefulness of electrical impedance tomography (EIT) in characterization of regional ventilation in IPF. Materials and methods: We investigated 17 patients with IPF and 15 healthy controls from the University of Giessen and Marburg Lung Center (UGMLC), Germany, for differences in the following EIT parameters: distribution of ventilation (TID), global inhomogeneity index (GI), regional impedance differences through the delta of end-expiratory lung impedance (dEELI), differences in surface of ventilated area (SURF), as well as center of ventilation (CG) and intratidal gas distribution (ITV). These parameters were assessed under spontaneous breathing and following a predefined escalation protocol of the positive end-expiratory pressure (PEEP), applied through a face mask by an intensive care respirator (EVITA, Draeger, Germany). Results: Individual slopes of dEELI over the PEEP increment protocol were found to be highly significantly increased in both groups (p < 0.001) but were not found to be significantly different between groups. Similarly, dTID slopes were increasing in response to PEEP, but this did not reach statistical significance within or between groups. Individual breathing patterns were very heterogeneous. There were no relevant differences of SURF, GI or CGVD over the PEEP escalation range. A correlation of dEELI to FVC, BMI, age, or weight did not forward significant results. Conclusions: In this study, we did see a significant increase in dEELI and a non-significant increase in dTID in IPF patients as well as in healthy controls in response to an increase of PEEP under spontaneous breathing. We propose the combined measurements of EIT and lung function to assess regional lung ventilation in spontaneously breathing subjects.


2015 ◽  
Vol 71 (1) ◽  
Author(s):  
Alison Lupton-Smith ◽  
Andrew Argent ◽  
Peter Rimensberger ◽  
Brenda Morrow

Background: Positioning of ill children is often used to optimise ventilation–perfusion matching, thereby improving oxygenation. Objectives: To determine the effects of supine and prone positions, and different head positions, on the distribution of ventilation in healthy, spontaneously breathing infants and children between the ages of 6 months and 9 years.Methods: Electrical impedance tomography measurements were recorded from participants in supine and prone positions. Head positions included the head turned to the left and right in supine and prone positions, and in the midline in the supine position. Distribution of ventilation was described using end-expiratory–end-inspiratory relative impedance change.Results: A total of 56 participants (boys = 31 [55%]; girls = 25 [45%]) were studied. The dorsal lung was significantly better ventilated than the ventral lung (P < 0.001) in both body positions. The majority of participants (83%) had greater ventilation in the dorsal lung in both positions, whilst five participants (10%) demonstrated consistently better ventilation in the non-dependent lung in both positions. Head position had no effect on the distribution of ventilation.Conclusions: This study demonstrates that the distribution of ventilation in healthy, spontaneously breathing infants and children in supine and prone positions is not as straightforward as previously thought, with no clear reversal of the adult pattern evident.


Author(s):  
Nadine Hochhausen ◽  
Torsten Kapell ◽  
Martin Dürbaum ◽  
Andreas Follmann ◽  
Rolf Rossaint ◽  
...  

AbstractWith electrical impedance tomography (EIT) recruitment and de-recruitment phenomena can be quantified and monitored at bedside. The aim was to examine the feasibility of EIT with respect to monitor atelectasis formation and resolution in the post anesthesia care unit (PACU). In this observational study, 107 postoperative patients were investigated regarding the presence and recovery of atelectasis described by the EIT-derived parameters Global Inhomogeneity Index (GI Index), tidal impedance variation (TIV), and the changes in end-expiratory lung impedance (ΔEELI). We examined whether the presence of obesity (ADP group) has an influence on pulmonary recovery compared to normal weight patients (NWP group). During the stay at PACU, measurements were taken every 15 min. GI Index, TIV, and ΔEELI were calculated for each time point. 107 patients were monitored and EIT-data of 16 patients were excluded for various reasons. EIT-data of 91 patients were analyzed off-line. Their length of stay averaged 80 min (25th and 75th quartile 52–112). The ADP group demonstrated a significantly higher GI Index at PACU arrival (p < 0.001). This finding disappeared during their stay at the PACU. Additionally, the ADP group showed a significant increase in ΔEELI between PACU arrival and discharge (p = 0.025). Furthermore, TIV showed a significantly lower value during the first 90 min of PACU stay as compared to the time period thereafter (p = 0.036). Our findings demonstrate that obesity has an influence on intraoperative atelectasis formation and de-recruitment during PACU stay. The application of EIT in spontaneously breathing PACU patients seems meaningful in monitoring pulmonary recovery.


Author(s):  
Bruno Furtado de Moura ◽  
francisco sepulveda ◽  
Jorge Luis Jorge Acevedo ◽  
Wellington Betencurte da Silva ◽  
Rogerio Ramos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document