scholarly journals SARS-CoV-2 Infectivity and Severity of COVID-19 According to SARS-CoV-2 Variants: Current Evidence

2021 ◽  
Vol 10 (12) ◽  
pp. 2635
Author(s):  
Thi Loi Dao ◽  
Van Thuan Hoang ◽  
Philippe Colson ◽  
Jean Christophe Lagier ◽  
Matthieu Million ◽  
...  

Background: We conducted this review to summarize the relation between viral mutation and infectivity of SARS-CoV-2 and also the severity of COVID-19 in vivo and in vitro. Method: Articles were identified through a literature search until 31 May 2021, in PubMed, Web of Science and Google Scholar. Results: Sixty-three studies were included. To date, most studies showed that the viral mutations, especially the D614G variant, correlate with a higher infectivity than the wild-type virus. However, the evidence of the association between viral mutation and severity of the disease is scant. A SARS-CoV-2 variant with a 382-nucleotide deletion was associated with less severe infection in patients. The 11,083G > U mutation was significantly associated with asymptomatic patients. By contrast, ORF1ab 4715L and S protein 614G variants were significantly more frequent in patients from countries where high fatality rates were also reported. The current evidence showed that variants of concern have led to increased infectivity and deteriorating epidemiological situations. However, the relation between this variant and severity of COVID-19 infection was contradictory. Conclusion: The COVID-19 pandemic continues to spread worldwide. It is necessary to anticipate large clinical cohorts to evaluate the virulence and transmissibility of SARS-CoV-2 mutants.

2000 ◽  
Vol 74 (7) ◽  
pp. 3353-3365 ◽  
Author(s):  
Chi-Long Lin ◽  
Che-Sheng Chung ◽  
Hans G. Heine ◽  
Wen Chang

ABSTRACT An immunodominant antigen, p35, is expressed on the envelope of intracellular mature virions (IMV) of vaccinia virus. p35 is encoded by the viral late gene H3L, but its role in the virus life cycle is not known. This report demonstrates that soluble H3L protein binds to heparan sulfate on the cell surface and competes with the binding of vaccinia virus, indicating a role for H3L protein in IMV adsorption to mammalian cells. A mutant virus defective in expression of H3L (H3L−) was constructed; the mutant virus has a small plaque phenotype and 10-fold lower IMV and extracellular enveloped virion titers than the wild-type virus. Virion morphogenesis is severely blocked and intermediate viral structures such as viral factories and crescents accumulate in cells infected with the H3L− mutant virus. IMV from the H3L− mutant virus are somewhat altered and less infectious than wild-type virions. However, cells infected by the mutant virus form multinucleated syncytia after low pH treatment, suggesting that H3L protein is not required for cell fusion. Mice inoculated intranasally with wild-type virus show high mortality and severe weight loss, whereas mice infected with H3L− mutant virus survive and recover faster, indicating that inactivation of the H3L gene attenuates virus virulence in vivo. In summary, these data indicate that H3L protein mediates vaccinia virus adsorption to cell surface heparan sulfate and is important for vaccinia virus infection in vitro and in vivo. In addition, H3L protein plays a role in virion assembly.


mBio ◽  
2020 ◽  
Vol 11 (6) ◽  
Author(s):  
Autumn T. LaPointe ◽  
V Douglas Landers ◽  
Claire E. Westcott ◽  
Kevin J. Sokoloski

ABSTRACT Alphaviruses are positive-sense RNA viruses that utilize a 5′ cap structure to facilitate translation of viral proteins and to protect the viral RNA genome. Nonetheless, significant quantities of viral genomic RNAs that lack a canonical 5′ cap structure are produced during alphaviral replication and packaged into viral particles. However, the role/impact of the noncapped genomic RNA (ncgRNA) during alphaviral infection in vivo has yet to be characterized. To determine the importance of the ncgRNA in vivo, the previously described D355A and N376A nsP1 mutations, which increase or decrease nsP1 capping activity, respectively, were incorporated into the neurovirulent AR86 strain of Sindbis virus to enable characterization of the impact of altered capping efficiency in a murine model of infection. Mice infected with the N376A nsP1 mutant exhibited slightly decreased rates of mortality and delayed weight loss and neurological symptoms, although levels of inflammation in the brain were similar to those of wild-type infection. Although the D355A mutation resulted in decreased antiviral gene expression and increased resistance to interferon in vitro, mice infected with the D355A mutant showed significantly reduced mortality and morbidity compared to mice infected with wild-type virus. Interestingly, expression of proinflammatory cytokines was found to be significantly decreased in mice infected with the D355A mutant, suggesting that capping efficiency and the production of ncgRNA are vital to eliciting pathogenic levels of inflammation. Collectively, these data indicate that the ncgRNA have important roles during alphaviral infection and suggest a novel mechanism by which noncapped viral RNAs aid in viral pathogenesis. IMPORTANCE Mosquito-transmitted alphaviruses have been the cause of widespread outbreaks of disease that can range from mild illness to lethal encephalitis or severe polyarthritis. There are currently no safe and effective vaccines or therapeutics with which to prevent or treat alphaviral disease, highlighting the need to better understand alphaviral pathogenesis to develop novel antiviral strategies. This report reveals production of noncapped genomic RNAs (ncgRNAs) to be a novel determinant of alphaviral virulence and offers insight into the importance of inflammation to pathogenesis. Taken together, the findings reported here suggest that the ncgRNAs contribute to alphaviral pathogenesis through the sensing of the ncgRNAs during alphaviral infection and are necessary for the development of severe disease.


2004 ◽  
Vol 78 (9) ◽  
pp. 4566-4572 ◽  
Author(s):  
Zhensheng Zhang ◽  
Ulrike Protzer ◽  
Zongyi Hu ◽  
James Jacob ◽  
T. Jake Liang

ABSTRACT The X protein (HBX) of the hepatitis B virus (HBV) is not essential for the HBV life cycle in vitro but is important for productive infection in vivo. Our previous study suggests that interaction of HBX with the proteasome complex may underlie the pleiotropic functions of HBX. With the woodchuck model, we demonstrated that the X-deficient mutants of woodchuck hepatitis virus (WHV) are not completely replication defective, possibly behaving like attenuated viruses. In the present study, we analyzed the effects of the proteasome inhibitors on the replication of wild-type and X-negative HBV and WHV. Recombinant adenoviruses or baculoviruses expressing replicating HBV or WHV genomes have been developed as a robust and convenient system to study viral replication in tissue culture. In cells infected with either the recombinant adenovirus-HBV or baculovirus-WHV, the replication level of the X-negative construct was about 10% of that of the wild-type virus. In the presence of proteasome inhibitors, the replication of the wild-type virus was not affected, while the replication of the X-negative virus of either HBV or WHV was enhanced and restored to the wild-type level. Our data suggest that HBX affects hepadnavirus replication through a proteasome-dependent pathway.


2000 ◽  
Vol 74 (21) ◽  
pp. 9895-9902 ◽  
Author(s):  
Jean-Claude Twizere ◽  
Pierre Kerkhofs ◽  
Arsène Burny ◽  
Daniel Portetelle ◽  
Richard Kettmann ◽  
...  

ABSTRACT Bovine leukemia virus (BLV) Tax protein, a transcriptional activator of viral expression, is essential for viral replication in vivo. Tax is believed to be involved in leukemogenesis because of its second function, immortalization of primary cells in vitro. These activities of Tax can be dissociated on the basis of point mutations within specific regions of the protein. For example, mutation of the phosphorylation sites at serines 106 and 293 abrogates immortalization potential in vitro but maintains transcriptional activity. This type of mutant is thus particularly useful for unraveling the role of Tax immortalization activity during leukemogenesis independently of viral replication. In this report, we describe the biological properties of BLV recombinant proviruses mutated in the Tax phosphorylation sites (BLVTax106+293). Titration of the proviral loads by semiquantitative PCR revealed that the BLV mutants propagated at wild-type levels in vivo. Furthermore, two animals (sheep 480 and 296) infected with BLVTax106+293 developed leukemia or lymphosarcoma after 16 and 36 months, respectively. These periods of time are within the normal range of latencies preceding the onset of pathogenesis induced by wild-type viruses. The phenotype of the mutant-infected cells was characteristic of a B lymphocyte (immunoglobulin M positive) expressing CD11b and CD5 (except at the final stage for the latter marker), a pattern that is typical of wild-type virus-infected target cells. Interestingly, the transformed B lymphocytes from sheep 480 also coexpressed the CD8 marker, a phenotype rarely observed in tumor biopsies from chronic lymphocytic leukemia patients. Finally, direct sequencing of the tax gene demonstrated that the leukemic cells did not harbor revertant proviruses. We conclude that viruses expressing a Tax mutant unable to transform primary cells in culture are still pathogenic in the sheep animal model. Our data thus provide a clear example of the discordant conclusions that can be drawn from in vitro immortalization assays and in vivo experiments. These observations could be of interest for other systems, such as the related human T-cell leukemia virus type 1, which currently lack animal models allowing the study of the leukemogenic process.


1999 ◽  
Vol 73 (10) ◽  
pp. 8831-8836 ◽  
Author(s):  
Hongmei Liu ◽  
Xiaoyun Wu ◽  
Hongling Xiao ◽  
John C. Kappes

ABSTRACT Integrase (IN) is the only retroviral enzyme necessary for the integration of retroviral cDNA into the host cell’s chromosomes. The structure and function of IN is highly conserved. The human immunodeficiency virus type 2 (HIV-2) IN has been shown to efficiently support 3′ processing and strand transfer of HIV-1 DNA substrate in vitro. To determine whether HIV-2 IN protein (IN2) could substitute for HIV-1 IN function in vivo, we used HIV-1 Vpr to deliver the IN2 into IN mutant HIV-1 virions by expression intrans as a Vpr-IN fusion protein.Trans-complementation with IN2 markedly increased the infectivity of IN-minus HIV-1. Compared with the homologous trans-IN protein, infectivity was increased to a level of 16%. Since IN has been found to play a role in reverse transcription (Wu et al., J. Virol. 73:2126–2135, 1999), cells infected with IN2-complemented HIV-1 were analyzed for DNA products of reverse transcription. DNA levels of approximately 18% of that of wild type were detected. The homologous trans-IN protein restored the synthesis of viral cDNA to approximately 86% of that of wild-type virus. By complementing integration-defective HIV-1 IN mutant viruses, which were not impaired in cDNA synthesis, thetrans-IN2 protein was shown to support integration up to a level of 55% compared with that of the homologoustrans-IN protein. The delivery of heterologous IN protein into HIV-1 particles in trans offers a novel approach to understand IN protein function in vivo.


2009 ◽  
Vol 84 (2) ◽  
pp. 810-821 ◽  
Author(s):  
Laura E. Luque ◽  
Olga A. Bridges ◽  
John N. Mason ◽  
Kelli L. Boyd ◽  
Allen Portner ◽  
...  

ABSTRACT While the molecular basis of fusion (F) protein refolding during membrane fusion has been studied extensively in vitro, little is known about the biological significance of membrane fusion activity in parainfluenza virus replication and pathogenesis in vivo. Two recombinant Sendai viruses, F-L179V and F-K180Q, were generated that contain F protein mutations in the heptad repeat A region of the ectodomain, a region of the protein known to regulate F protein activation. In vitro, the F-L179V virus caused increased syncytium formation (cell-cell membrane fusion) yet had a rate of replication and levels of F protein expression and cleavage similar to wild-type virus. The F-K180Q virus had a reduced replication rate along with reduced levels of F protein expression, cleavage, and fusogenicity. In DBA/2 mice, the hyperfusogenic F-L179V virus induced greater morbidity and mortality than wild-type virus, while the attenuated F-K180Q virus was much less pathogenic. During the first week of infection, virus replication and inflammation in the lungs were similar for wild-type and F-L179V viruses. After approximately 1 week of infection, the clearance of F-L179V virus was delayed, and more extensive interstitial inflammation and necrosis were observed in the lungs, affecting entire lobes of the lungs and having significantly greater numbers of syncytial cell masses in alveolar spaces on day 10. On the other hand, the slower-growing F-K180Q virus caused much less extensive inflammation than wild-type virus, presumably due to its reduced replication rate, and did not cause observable syncytium formation in the lungs. Overall, the results show that residues in the heptad repeat A region of the F protein modulate the virulence of Sendai virus in mice by influencing both the spread and clearance of the virus and the extent and severity of inflammation. An understanding of how the F protein contributes to infection and inflammation in vivo may assist in the development of antiviral therapies against respiratory paramyxoviruses.


2003 ◽  
Vol 77 (10) ◽  
pp. 6050-6054 ◽  
Author(s):  
Masato Hatta ◽  
Yoshihiro Kawaoka

ABSTRACT The NB protein of influenza B virus is thought to function as an ion channel and therefore would be expected to have an essential function in viral replication. Because direct evidence for its absolute requirement in the viral life cycle is lacking, we generated NB knockout viruses by reverse genetics and tested their growth properties both in vitro and in vivo. Mutants not expressing NB replicated as efficiently as the wild-type virus in cell culture, whereas in mice they showed restricted growth compared with findings for the wild-type virus. Thus, the NB protein is not essential for influenza B virus replication in cell culture but promotes efficient growth in mice.


2001 ◽  
Vol 75 (4) ◽  
pp. 1697-1707 ◽  
Author(s):  
Gerardo Abenes ◽  
Manfred Lee ◽  
Erik Haghjoo ◽  
Tuong Tong ◽  
Xiaoyan Zhan ◽  
...  

ABSTRACT Using a Tn3-based transposon mutagenesis approach, we have generated a pool of murine cytomegalovirus (MCMV) mutants. In this study, one of the mutants, RvM27, which contained the transposon sequence at open reading frame M27, was characterized both in tissue culture and in immunocompetent BALB/c mice and immunodeficient SCID mice. Our results suggest that the M27 carboxyl-terminal sequence is dispensable for viral replication in vitro. Compared to the wild-type strain and a rescued virus that restored the M27 region, RvM27 was attenuated in growth in both BALB/c and SCID mice that were intraperitoneally infected with the viruses. Specifically, the titers of RvM27 in the salivary glands, lungs, spleens, livers, and kidneys of the infected SCID mice at 21 days postinfection were 50- to 500-fold lower than those of the wild-type virus and the rescued virus. Moreover, the virulence of the mutant virus appeared to be attenuated, because no deaths occurred among SCID mice infected with RvM27 for up to 37 days postinfection, while all the animals infected with the wild-type and rescued viruses died within 27 days postinfection. Our observations provide the first direct evidence to suggest that a disruption of M27 expression results in reduced viral growth and attenuated viral virulence in vivo in infected animals. Moreover, these results suggest that M27 is a viral determinant required for optimal MCMV growth and virulence in vivo and provide insight into the functions of the M27 homologues found in other animal and human CMVs as well as in other betaherpesviruses.


2005 ◽  
Vol 86 (10) ◽  
pp. 2817-2821 ◽  
Author(s):  
Ana M. Falcón ◽  
Ana Fernandez-Sesma ◽  
Yurie Nakaya ◽  
Thomas M. Moran ◽  
Juan Ortín ◽  
...  

It was previously shown that two mutant influenza A viruses expressing C-terminally truncated forms of the NS1 protein (NS1-81 and NS1-110) were temperature sensitive in vitro. These viruses contain HA, NA and M genes derived from influenza A/WSN/33 H1N1 virus (mouse-adapted), and the remaining five genes from human influenza A/Victoria/3/75 virus. Mice intranasally infected with the NS1 mutant viruses showed undetectable levels of virus in lungs at day 3, whereas those infected with the NS1 wild-type control virus still had detectable levels of virus at this time. Nevertheless, the temperature-sensitive mutant viruses induced specific cellular and humoral immune responses similar to those induced by the wild-type virus. Mice immunized with the NS1 mutant viruses were protected against a lethal challenge with influenza A/WSN/33 virus. These results indicate that truncations in the NS1 protein resulting in temperature-sensitive phenotypes in vitro correlate with attenuation in vivo without compromising viral immunogenicity, an ideal characteristic for live attenuated viral vaccines.


2020 ◽  
Vol 94 (19) ◽  
Author(s):  
Yu Zhang ◽  
Nozomi Kuse ◽  
Tomohiro Akahoshi ◽  
Takayuki Chikata ◽  
Hiroyuki Gatanaga ◽  
...  

ABSTRACT The accumulation of HIV-1 escape mutations affects HIV-1 control by HIV-1-specific T cells. Some of these mutations can elicit escape mutant-specific T cells, but it still remains unclear whether they can suppress the replication of HIV-1 mutants. It is known that HLA-B*52:01-restricted RI8 (Gag 275 to 282; RMYSPTSI) is a protective T cell epitope in HIV-1 subtype B-infected Japanese individuals, though 3 Gag280A/S/V mutations are found in 26% of them. Gag280S and Gag280A were HLA-B*52:01-associated mutations, whereas Gag280V was not, implying a different mechanism for the accumulation of Gag280 mutations. In this study, we investigated the coevolution of HIV-1 with RI8-specific T cells and suppression of HIV-1 replication by its escape mutant-specific T cells both in vitro and in vivo. HLA-B*52:01+ individuals infected with Gag280A/S mutant viruses failed to elicit these mutant epitope-specific T cells, whereas those with the Gag280V mutant one effectively elicited RI8-6V mutant-specific T cells. These RI8-6V-specific T cells suppressed the replication of Gag280V virus and selected wild-type virus, suggesting a mechanism affording no accumulation of the Gag280V mutation in the HLA-B*52:01+ individuals. The responders to wild-type (RI8-6T) and RI8-6V mutant peptides had significantly higher CD4 counts than nonresponders, indicating that the existence of not only RI8-6T-specific T cells but also RI8-6V-specific ones was associated with a good clinical outcome. The present study clarified the role of escape mutant-specific T cells in HIV-1 evolution and in the control of HIV-1. IMPORTANCE Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo. In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1.


Sign in / Sign up

Export Citation Format

Share Document