scholarly journals Potential Applications of Computational Fluid Dynamics for Predicting Hemolysis in Mitral Paravalvular Leaks

2021 ◽  
Vol 10 (24) ◽  
pp. 5752
Author(s):  
Michał Kozłowski ◽  
Krzysztof Wojtas ◽  
Wojciech Orciuch ◽  
Marek Jędrzejek ◽  
Grzegorz Smolka ◽  
...  

Paravalvular leaks (PVLs) may lead to hemolysis. In vitro shear stress forces above 300 Pa cause erythrocyte destruction. PVL channel dimensions may determine magnitude of shear stress forces that affect erythrocytes; however, this has not been tested. It remains unclear how different properties of PVL channels contribute to presence of hemolysis. A model of a left ventricle was created based on data from computer tomography with Slicer software PVLs of various shapes and sizes were introduced. Blood flow was simulated using ANSYS Fluent software. The following variables were examined: wall shear stress, shear stress in fluid, volume of PVL channel with shear stress exceeding 300 Pa, and duration of exposure of erythrocytes to shear stress values above 300 Pa. In all models, shear stress forces exceeded 300 Pa. Shear stress increased with blood flow rates and cross-sectional areas of any PVL. There was no linear relationship between cross-sectional area of a PVL and volume of a PVL channel with shear stress > 300 Pa. Blood flow through mitral PVLs is associated with shear stress above 300 Pa. Cross-sectional area of a PVL does not correlate with volume of a PVL channel with shear stress > 300 Pa and duration of exposure of erythrocytes to shear stress > 300 Pa.

2021 ◽  
Vol 10 (12) ◽  
pp. 2721
Author(s):  
Nobuto Nakanishi ◽  
Shigeaki Inoue ◽  
Rie Tsutsumi ◽  
Yusuke Akimoto ◽  
Yuko Ono ◽  
...  

Ultrasound has become widely used as a means to measure the rectus femoris muscle in the acute and chronic phases of critical illness. Despite its noninvasiveness and accessibility, its accuracy highly depends on the skills of the technician. However, few ultrasound phantoms for the confirmation of its accuracy or to improve technical skills exist. In this study, the authors created a novel phantom model and used it for investigating the accuracy of measurements and for training. Study 1 investigated how various conditions affect ultrasound measurements such as thickness, cross-sectional area, and echogenicity. Study 2 investigated if the phantom can be used for the training of various health care providers in vitro and in vivo. Study 1 showed that thickness, cross-sectional area, and echogenicity were affected by probe compression strength, probe angle, phantom compression, and varying equipment. Study 2 in vitro showed that using the phantom for training improved the accuracy of the measurements taken within the phantom, and Study 2 in vivo showed the phantom training had a short-term effect on improving the measurement accuracy in a human volunteer. The new ultrasound phantom model revealed that various conditions affected ultrasound measurements, and phantom training improved the measurement accuracy.


2002 ◽  
Vol 7 (2) ◽  
pp. 247-251 ◽  
Author(s):  
Masahiko Noguchi ◽  
Toshiya Kitaura ◽  
Kazuya Ikoma ◽  
Yoshiaki Kusaka

2005 ◽  
Vol 61 (2) ◽  
Author(s):  
M. A. Gregory ◽  
M. N. Deane ◽  
M. Marsh

Objective: The precise mechanisms by which massage promotes repair in injured soft tissue are unknown. Various authorshave attributed the beneficial effects of massage to vasodilation and increased skin and muscle blood flow. The aim of this study was to determine whether deep transverse friction massage (DTF) causes capillary vasodilation in untraumatised skeletal muscle. Setting: Academic institution.Interventions: Twelve New Zealand white rabbits were anaesthetised and the left biceps femoris muscle received 10 minutes of DTF. Following treatment, wedge biopsies were taken from the musclewithin 10 minutes of treatment (R1 - 4), 24 hours (R5 - 8) and 6 days(R9 - 12) after treatment. To serve as controls, similar biopsies weretaken from the right biceps femoris of animals. The samples were fixed, dehydrated and embedded in epoxy resin.Transverse sections (1µm) of muscle were cut, stained with 1% aqueous alkaline toluidine blue and examined with a light microscope using a 40X objective. Images containing capillaries were captured using an image analyser with SIS software and the cross sectional diameters of at least 60 capillaries were measured from each specimen. Main Outcome Measures: Changes in capillary diameter. Results: The mean capillary diameters in control muscle averaged 4.76 µm. DTF caused a significant immediate increase of 17.3% in cross sectional area (p<0.001), which was not significantly increased by 10.0% after 24 hours (p>0.05). Six days after treatment the cross-sectional area of the treated muscle was 7.6% smaller than the controls. Conclusions: This confirms the contention that DTF stimulates muscle blood flow immediately after treatment and this may account for its beneficial effects in certain conditions. 


2017 ◽  
Vol 16 (3) ◽  
pp. 214-219 ◽  
Author(s):  
Marta Gimunová ◽  
Martin Zvonař ◽  
Kateřina Kolářová ◽  
Zdeněk Janík ◽  
Ondřej Mikeska ◽  
...  

Abstract Background During pregnancy, a number of changes affecting venous blood flow occur in the circulatory system, such as reduced vein wall tension or increased exposure to collagen fibers. These factors may cause blood stagnation, swelling of the legs, or endothelial damage and consequently lead to development of venous disease. Objectives The aim of this study is to evaluate the effect of special footwear designed to improve blood circulation in the feet on venous blood flow changes observed during advancing phases of pregnancy. Methods Thirty healthy pregnant women participated in this study at 25, 30, and 35 weeks of gestation. Participants were allocated at random to an experimental group (n = 15) which was provided with the special footwear, or a control group (n = 15). At each data collection session, Doppler measurements of peak systolic blood flow velocity and cross-sectional area of the right popliteal vein were performed using a MySonoU6 ultrasound machine with a linear transducer (Samsung Medison). The differences were compared using Cohen’s d test to calculate effect size. Results With advancing phases of pregnancy, peak systolic velocity in the popliteal vein decreased significantly in the control group, whereas it increased significantly in the experimental group. No significant change in cross-sectional area was observed in any of the groups. Conclusions Findings in the experimental group demonstrated that wearing the footwear tested may prevent venous blood velocity from reducing during advanced phases of pregnancy. Nevertheless, there is a need for further investigation of the beneficial effect on venous flow of the footwear tested and its application.


1993 ◽  
Vol 264 (1) ◽  
pp. H40-H44 ◽  
Author(s):  
D. H. Wang ◽  
R. L. Prewitt

Adaptive responses of mature arterioles were examined after a 38% reduction in total blood flow to the cremaster muscle produced by unilateral orchidectomy in 12-wk-old rats. Four weeks later, the muscle was smaller than the contralateral cremaster, which did not increase in size during this period. Measured by closed-circuit television microscopy, the internal diameters of first- through fourth-order arterioles (1A-4A) were smaller, but wall cross-sectional area was reduced only in 3As. The smaller diameter of the 1A in the orchidectomy muscle resulted in unchanged wall shear rate. As determined from the perfusion-fixed, microfilled cremaster muscles, the total length of the arcading arterioles and the number of 3As were not statistically different, but the total number of 4As was significantly reduced on the orchidectomy side. Therefore, chronic load reduction in a mature muscle resulted in reduced blood flow, decreased number of 4As, and smaller arteriolar internal diameters in the absence of net changes in vascular wall cross-sectional area. A local autoregulatory mechanism related to flow-induced shear stress is suggested as the mechanism mediating the changes.


Author(s):  
Masaru Sumida

An experimental investigation of pulsatile flow through a tapered U-tube was performed to study the blood flow in the aorta. The experiments were carried out in a U-tube with a curvature radius ratio of 3.5 and a 50% reduction in the cross-sectional area from the entrance to the exit of the curved section. Velocity measurements were conducted by a laser Doppler velocimetry for a Womersley number of 10, a mean Dean number of 400 and a flow rate ratio of 1. The velocity profiles for pulsatile flow in the tapered U-tube were compared with the corresponding results in a U-tube having a uniform cross-sectional area. The striking effects of the tapering on the flow are exhibited in the axial velocity profiles in the section from the latter half of the bend to the downstream tangent immediately behind the bend exit. A depression in the velocity profile appears at a smaller turn angle Ω in the case of tapering, although the magnitude of the depression relative to the cross-sectional average velocity decreases. The value of β, which indicates the uniformity in the velocity profile over the cross section, decreases with increasing Ω, whereas it rapidly increases immediately behind the bend exit.


1997 ◽  
Vol 82 (3) ◽  
pp. 954-958 ◽  
Author(s):  
R. W. Mitchell ◽  
E. Rühlmann ◽  
H. Magnussen ◽  
N. M. Muñoz ◽  
A. R. Leff ◽  
...  

Mitchell, R. W., E. Rühlmann, H. Magnussen, N. M. Muñoz, A. R. Leff, and K. F. Rabe. Conservation of bronchiolar wall area during constriction and dilation of human airways. J. Appl. Physiol. 82(3): 954–958, 1997.—We assessed the effect of smooth muscle contraction and relaxation on airway lumen subtended by the internal perimeter ( A i) and total cross-sectional area ( A o) of human bronchial explants in the absence of the potential lung tethering forces of alveolar tissue to test the hypothesis that bronchoconstriction results in a comparable change of A iand A o. Luminal area (i.e., A i) and A owere measured by using computerized videomicrometry, and bronchial wall area was calculated accordingly. Images on videotape were captured; areas were outlined, and data were expressed as internal pixel number by using imaging software. Bronchial rings were dissected in 1.0- to 1.5-mm sections from macroscopically unaffected areas of lungs from patients undergoing resection for carcinoma, placed in microplate wells containing buffered saline, and allowed to equilibrate for 1 h. Baseline, A o[5.21 ± 0.354 (SE) mm2], and A i(0.604 ± 0.057 mm2) were measured before contraction of the airway smooth muscle (ASM) with carbachol. Mean A inarrowed by 0.257 ± 0.052 mm2in response to 10 μM carbachol ( P = 0.001 vs. baseline). Similarly, A onarrowed by 0.272 ± 0.110 mm2in response to carbachol ( P = 0.038 vs. baseline; P = 0.849 vs. change in A i). Similar parallel changes in cross-sectional area for A iand A owere observed for relaxation of ASM from inherent tone of other bronchial rings in response to 10 μM isoproterenol. We demonstrate a unique characteristic of human ASM; i.e., both luminal and total cross-sectional area of human airways change similarly on contraction and relaxation in vitro, resulting in a conservation of bronchiolar wall area with bronchoconstriction and dilation.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Piotr Jan Bielawski

PurposeThe lack of integrity of the piston machine combustion chamber manifests itself in leakages of the working fluid between the piston and the cylinder liner, at valves mounted in the cylinder head and between the head and the liner. An untight combustion chamber leads to decreased power output or efficiency of the engine, while leaks of a fluid may cause damage to many components of the chamber. The actual value of working chamber leak is a desired and essential piece of information for planning operations of a given machine.Design/methodology/approachThis research paper describes causes and mechanisms of leakage from the working chamber of internal combustion engines. Besides, the paper outlines presently used methods and means of leak identification and states that their further development and improvements are needed. New methods and their applicability are presented.FindingsThe methods of leak identification have been divided into diagnostic and non-working machine leak identification methods. The need has been justified for the identification of leakage from the combustion chamber of a non-working machine and for using the leakage measure as the value of the cross-sectional area of the equivalent leak, defined as the sum of cross-section areas of all leaking paths. The analysis of possible developments of tightness assessment methods referring to the combustion chamber of a non-working machine consisted in modelling subsequent combustion chamber leaks as gas-filled tank leak, leak from another element of gas-filled tank and as a regulator of gas flow through a nozzle.Originality/valueA measurement system was built allowing the measurement of pressure drop in a tank with the connected engine combustion chamber, which indicated the usefulness of the system for leakage measurement in units as defined in applicable standards. A pneumatic sensor was built for measuring the cross-sectional area of the equivalent leak of the combustion chamber connected to the sensor where the chamber functioned as a regulator of gas flow through the sensor nozzle. It has been shown that the sensor can be calibrated by means of reference leaks implemented as nozzles of specific diameters and lengths. The schematic diagram of a system for measuring the combustion chamber leakage and a diagram of a sensor for measuring the cross-sectional area of the equivalent leak of the combustion chamber leakage are presented. The results are given of tightness tests of a small one-cylinder combustion engine conducted by means of the set up measurement system and a pre-prototype pneumatic sensor. The two solutions proved to be practically useful.


Sign in / Sign up

Export Citation Format

Share Document