Conservation of bronchiolar wall area during constriction and dilation of human airways

1997 ◽  
Vol 82 (3) ◽  
pp. 954-958 ◽  
Author(s):  
R. W. Mitchell ◽  
E. Rühlmann ◽  
H. Magnussen ◽  
N. M. Muñoz ◽  
A. R. Leff ◽  
...  

Mitchell, R. W., E. Rühlmann, H. Magnussen, N. M. Muñoz, A. R. Leff, and K. F. Rabe. Conservation of bronchiolar wall area during constriction and dilation of human airways. J. Appl. Physiol. 82(3): 954–958, 1997.—We assessed the effect of smooth muscle contraction and relaxation on airway lumen subtended by the internal perimeter ( A i) and total cross-sectional area ( A o) of human bronchial explants in the absence of the potential lung tethering forces of alveolar tissue to test the hypothesis that bronchoconstriction results in a comparable change of A iand A o. Luminal area (i.e., A i) and A owere measured by using computerized videomicrometry, and bronchial wall area was calculated accordingly. Images on videotape were captured; areas were outlined, and data were expressed as internal pixel number by using imaging software. Bronchial rings were dissected in 1.0- to 1.5-mm sections from macroscopically unaffected areas of lungs from patients undergoing resection for carcinoma, placed in microplate wells containing buffered saline, and allowed to equilibrate for 1 h. Baseline, A o[5.21 ± 0.354 (SE) mm2], and A i(0.604 ± 0.057 mm2) were measured before contraction of the airway smooth muscle (ASM) with carbachol. Mean A inarrowed by 0.257 ± 0.052 mm2in response to 10 μM carbachol ( P = 0.001 vs. baseline). Similarly, A onarrowed by 0.272 ± 0.110 mm2in response to carbachol ( P = 0.038 vs. baseline; P = 0.849 vs. change in A i). Similar parallel changes in cross-sectional area for A iand A owere observed for relaxation of ASM from inherent tone of other bronchial rings in response to 10 μM isoproterenol. We demonstrate a unique characteristic of human ASM; i.e., both luminal and total cross-sectional area of human airways change similarly on contraction and relaxation in vitro, resulting in a conservation of bronchiolar wall area with bronchoconstriction and dilation.

2021 ◽  
Vol 10 (12) ◽  
pp. 2721
Author(s):  
Nobuto Nakanishi ◽  
Shigeaki Inoue ◽  
Rie Tsutsumi ◽  
Yusuke Akimoto ◽  
Yuko Ono ◽  
...  

Ultrasound has become widely used as a means to measure the rectus femoris muscle in the acute and chronic phases of critical illness. Despite its noninvasiveness and accessibility, its accuracy highly depends on the skills of the technician. However, few ultrasound phantoms for the confirmation of its accuracy or to improve technical skills exist. In this study, the authors created a novel phantom model and used it for investigating the accuracy of measurements and for training. Study 1 investigated how various conditions affect ultrasound measurements such as thickness, cross-sectional area, and echogenicity. Study 2 investigated if the phantom can be used for the training of various health care providers in vitro and in vivo. Study 1 showed that thickness, cross-sectional area, and echogenicity were affected by probe compression strength, probe angle, phantom compression, and varying equipment. Study 2 in vitro showed that using the phantom for training improved the accuracy of the measurements taken within the phantom, and Study 2 in vivo showed the phantom training had a short-term effect on improving the measurement accuracy in a human volunteer. The new ultrasound phantom model revealed that various conditions affected ultrasound measurements, and phantom training improved the measurement accuracy.


2016 ◽  
Vol 23 (2) ◽  
pp. 227-236 ◽  
Author(s):  
Dunja Perić ◽  
Paul A. Bartley ◽  
Lawrence Davis ◽  
Ali Ulvi Uzer ◽  
Cahit Gürer

AbstractLignin is a coproduct of biofuel and paper industries, which exhibits binding qualities when mixed with water. Lignin is an ideal candidate for a sustainable stabilization of unpaved roads. To this end, an experimental program was devised and carried out to quantify effects of lignin on compaction and early age shear strength behaviors of sand. Samples were prepared by mixing a particular type of coproduct called calcium lignosulfonate (CaL) with sand and water. Based on the extensive analyses of six series of strength tests, it was found that a normalized cohesion increased with an increasing normalized areas ratio. Normalizations were carried out by dividing the cohesion and area ratio by gravimetric CaL content whereby the area ratio was obtained by dividing the portion of the cross-sectional area occupied with lignosulfonate-water (CaL-W) paste by the total cross-sectional area. While the increase in the normalized cohesion eventually leveled out, the cohesion peaked at 6% of CaL. Thus, sand-CaL-water (S-CaL-W) mixes sustained larger shear stresses than dry sand for a range of normal stresses below the limiting normal stress. Consequently, the early age behavior indicates that adding CaL-W to sand is clearly beneficial in the near-surface applications in dry sand.


2002 ◽  
Vol 7 (2) ◽  
pp. 247-251 ◽  
Author(s):  
Masahiko Noguchi ◽  
Toshiya Kitaura ◽  
Kazuya Ikoma ◽  
Yoshiaki Kusaka

1993 ◽  
Vol 75 (5) ◽  
pp. 2013-2021 ◽  
Author(s):  
P. Chitano ◽  
S. B. Sigurdsson ◽  
A. J. Halayko ◽  
N. L. Stephens

To investigate heterogeneity of airway smooth muscle response, we studied strips of large and small branches from third- to sixth-generation bronchi obtained from ragweed antigen-sensitized and control dogs. The response to electrical field stimulation and carbamylcholine chloride was greater in strips from larger branches of the same generation when expressed as "tissue stress" (force per unit cross-sectional area of the whole tissue), whereas no difference emerged with use of the more appropriate "smooth muscle stress" (force per unit cross-sectional area of the muscle tissue). The response to histamine was significantly higher in small branches than in large ones, and histamine sensitivity [mean effective concentration (EC50)] was 7.79 x 10(-6) [geometric standard error of the mean (GSEM) 1.20] and 1.49 x 10(-5) M (GSEM 1.14), respectively (P < 0.01). Strips from control and sensitized animals at each site and strips from different generations did not show any significant difference. When we clustered our preparations according to dimensions, the response to histamine was significantly higher in small bronchi than in large ones and histamine EC50 was 8.95 x 10(-6) (GSEM 1.17) and 1.57 x 10(-5) M (GSEM 1.18), respectively (P < 0.05). We conclude that evaluation of muscle response in different tissues requires appropriate normalization. Furthermore, classification into generations is inadequate to study bronchial responsiveness, inasmuch as major differences originate from airway size.


2020 ◽  
Vol 9 (24) ◽  
Author(s):  
Gregory T. Adamson ◽  
Doff B. McElhinney ◽  
Yulin Zhang ◽  
Jeffrey A. Feinstein ◽  
Lynn F. Peng ◽  
...  

Background Due in part to the heterogeneity of the pulmonary circulation in patients with tetralogy of Fallot and major aortopulmonary collateral arteries (MAPCAs), research on this condition has focused on relatively basic anatomic characteristics. We aimed to detail pulmonary artery (PA) and MAPCA anatomy in a large group of infants, assess relationships between anatomy and early surgical outcomes, and consider systems for classifying MAPCAs. Methods and Results All infants ( <1 year of age) undergoing first cardiac surgery for tetralogy of Fallot/MAPCAs from 2001 to 2019 at Stanford University were identified. Preoperative angiograms delineating supply to all 18 pulmonary segments were reviewed for details of each MAPCA and the arborization and size of central PAs. We studied 276 patients with 1068 MAPCAs and the following PA patterns: 152 (55%) incompletely arborizing PAs, 48 (17%) normally arborizing PAs, 45 (16%) absent PAs, and 31 (11%) unilateral MAPCAs. There was extensive anatomic variability, but no difference in early outcomes according to PA arborization or the predominance of PAs or MAPCAs. Patients with low total MAPCA and/or PA cross‐sectional area were less likely to undergo complete repair. Conclusions MAPCA anatomy is highly variable and essentially unique for each patient. Though each pulmonary segment can be supplied by a MAPCA, central PA, or both, all anatomic combinations are similarly conducive to a good repair. Total cross‐sectional area of central PA and MAPCA material is an important driver of outcome. We elucidate a number of novel associations between anatomic features, but the extreme variability of the pulmonary circulation makes a granular tetralogy of Fallot/MAPCA classification system unrealistic.


2005 ◽  
Vol 98 (3) ◽  
pp. 850-855 ◽  
Author(s):  
Joseph C. Anderson ◽  
Albert L. Babb ◽  
Michael P. Hlastala

We analyzed published measurements of the bronchial circulation and airway wall (Anderson JC, Bernard SL, Luchtel DL, Babb AL, and Hlastala MP. Respir Physiol Neurobiol 132: 329–339, 2002) and determined that the radial distribution of bronchial capillary cross-sectional area was fractal. We limited our analysis to bronchial capillaries, diameter ≤10 μm, that resided between the epithelial basement membrane and adventitia-alveolar boundary, the airway wall tissue. Thirteen different radial distributions of capillary-to-tissue area were constructed simply by changing the number of annuli (i.e., the annular size) used to form each distribution. For the 13 distributions created, these annuli ranged in size from to of the size of the airway wall area. Radial distributions were excluded from the fractal analysis if the sectioning procedure resulted in an annulus with a radial thickness less than the diameter of a capillary. To determine the fractal dimension for a given airway, the coefficient of variation (CV) for each distribution was calculated, and ln(CV) was plotted against the logarithm of the relative piece area. For airways with diameter >2.4 mm, this relationship was linear, which indicated the radial distribution of bronchial capillary cross-sectional area was fractal with an average fractal dimension of 1.27. The radial distribution of bronchial capillary cross-sectional area was not fractal around airways with diameter <1.5 mm. We speculated on how the fractal nature of this circulation impacts the distribution of bronchial blood flow and the efficiency of mass transport during health and disease. A fractal analysis can be used as a tool to quantify and summarize investigations of the bronchial circulation.


Author(s):  
Charles H. Turner ◽  
Alexander G. Robling

The accumulation of bone mass during growth can be enhanced by environmental factors such as mechanical loading (exercise) or calcium intake, but 60–70% of the variance in adult bone mineral density (BMD) is explained by heredity. Consequently, understanding the signaling pathways targeted by the genes governing bone accumulation holds perhaps the greatest potential in reducing fracture incidence later in life. Rodent models are particularly useful for studying the genetics of skeletal traits. Of the available inbred mouse strains, three in particular have been studied extensively in skeletal genetics: C57BL/6, DBA/2, and C3H/He. The C57BL/6 strain is characterized by low BMD and large total cross-sectional area (CSA) in the midshaft femur; the C3H/He strain exhibits very high femoral BMD and a smaller femoral CSA than the C57BL/6 mice; and DBA/2 mice have moderately high femoral BMD and a very small midshaft femur CSA. Mechanical loading of the skeleton during growth can substantially enhance periosteal bone apposition, and ultimately produce a diaphyseal cross section with enlarged area. Therefore we hypothesized that the mouse strain with greater femoral cross-sectional area (C57BL/6) might have a genetic predisposition for greater mechanosensitivity than mice with smaller cross sections (C3H/He and DBA/2).


1965 ◽  
Vol 43 (5) ◽  
pp. 773-781 ◽  
Author(s):  
Hideaki Takahashi ◽  
Harold M. Frost

A correlation study was performed of the relationship between the total cross-sectional area of the fifth, sixth, or seventh rib in its middle third, and the height, weight, and sex of its owner. The study involved 115 metabolically normal people and yielded high correlation coefficients between the calculated and observed total rib cross-sectional areas of 60 males and 55 females. It is suggested that the total cross-sectional area at a standard bone sampling site be used as a basis for normalizing measures of the severity of osteoporosis. This would allow one to make improved comparisons of the severity of osteoporosis between persons of different body habitus and sex.


2010 ◽  
Vol 298 (1) ◽  
pp. C149-C162 ◽  
Author(s):  
Nadège Zanou ◽  
Georges Shapovalov ◽  
Magali Louis ◽  
Nicolas Tajeddine ◽  
Chiara Gallo ◽  
...  

Skeletal muscle contraction is reputed not to depend on extracellular Ca2+. Indeed, stricto sensu , excitation-contraction coupling does not necessitate entry of Ca2+. However, we previously observed that, during sustained activity (repeated contractions), entry of Ca2+is needed to maintain force production. In the present study, we evaluated the possible involvement of the canonical transient receptor potential (TRPC)1 ion channel in this entry of Ca2+and investigated its possible role in muscle function. Patch-clamp experiments reveal the presence of a small-conductance channel (13 pS) that is completely lost in adult fibers from TRPC1−/−mice. The influx of Ca2+through TRPC1 channels represents a minor part of the entry of Ca2+into muscle fibers at rest, and the activity of the channel is not store dependent. The lack of TRPC1 does not affect intracellular Ca2+concentration ([Ca2+]i) transients reached during a single isometric contraction. However, the involvement of TRPC1-related Ca2+entry is clearly emphasized in muscle fatigue. Indeed, muscles from TRPC1−/−mice stimulated repeatedly progressively display lower [Ca2+]itransients than those observed in TRPC1+/+fibers, and they also present an accentuated progressive loss of force. Interestingly, muscles from TRPC1−/−mice display a smaller fiber cross-sectional area, generate less force per cross-sectional area, and contain less myofibrillar proteins than their controls. They do not present other signs of myopathy. In agreement with in vitro experiments, TRPC1−/−mice present an important decrease of endurance of physical activity. We conclude that TRPC1 ion channels modulate the entry of Ca2+during repeated contractions and help muscles to maintain their force during sustained repeated contractions.


Sign in / Sign up

Export Citation Format

Share Document