scholarly journals Pathogenetical and Neurophysiological Features of Patients with Autism Spectrum Disorder: Phenomena and Diagnoses

2019 ◽  
Vol 8 (10) ◽  
pp. 1588
Author(s):  
Yunho Jin ◽  
Jeonghyun Choi ◽  
Seunghoon Lee ◽  
Jong Won Kim ◽  
Yonggeun Hong

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is accompanied by social deficits, repetitive and restricted interests, and altered brain development. The majority of ASD patients suffer not only from ASD itself but also from its neuropsychiatric comorbidities. Alterations in brain structure, synaptic development, and misregulation of neuroinflammation are considered risk factors for ASD and neuropsychiatric comorbidities. Electroencephalography has been developed to quantitatively explore effects of these neuronal changes of the brain in ASD. The pineal neurohormone melatonin is able to contribute to neural development. Also, this hormone has an inflammation-regulatory role and acts as a circadian key regulator to normalize sleep. These functions of melatonin may play crucial roles in the alleviation of ASD and its neuropsychiatric comorbidities. In this context, this article focuses on the presumable role of melatonin and suggests that this hormone could be a therapeutic agent for ASD and its related neuropsychiatric disorders.

2020 ◽  
Vol 27 (40) ◽  
pp. 6771-6786
Author(s):  
Geir Bjørklund ◽  
Nagwa Abdel Meguid ◽  
Maryam Dadar ◽  
Lyudmila Pivina ◽  
Joanna Kałużna-Czaplińska ◽  
...  

As a major neurodevelopmental disorder, Autism Spectrum Disorder (ASD) encompasses deficits in communication and repetitive and restricted interests or behaviors in childhood and adolescence. Its etiology may come from either a genetic, epigenetic, neurological, hormonal, or an environmental cause, generating pathways that often altogether play a synergistic role in the development of ASD pathogenesis. Furthermore, the metabolic origin of ASD should be important as well. A balanced diet consisting of the essential and special nutrients, alongside the recommended caloric intake, is highly recommended to promote growth and development that withstand the physiologic and behavioral challenges experienced by ASD children. In this review paper, we evaluated many studies that show a relationship between ASD and diet to develop a better understanding of the specific effects of the overall diet and the individual nutrients required for this population. This review will add a comprehensive update of knowledge in the field and shed light on the possible nutritional deficiencies, metabolic impairments (particularly in the gut microbiome), and malnutrition in individuals with ASD, which should be recognized in order to maintain the improved socio-behavioral habit and physical health.


2020 ◽  
Vol 10 (12) ◽  
pp. 951
Author(s):  
Alma Y. Galvez-Contreras ◽  
David Zarate-Lopez ◽  
Ana L. Torres-Chavez ◽  
Oscar Gonzalez-Perez

Autism Spectrum Disorder (ASD) is an early neurodevelopmental disorder that involves deficits in interpersonal communication, social interaction, and repetitive behaviors. Although ASD pathophysiology is still uncertain, alterations in the abnormal development of the frontal lobe, limbic areas, and putamen generate an imbalance between inhibition and excitation of neuronal activity. Interestingly, recent findings suggest that a disruption in neuronal connectivity is associated with neural alterations in white matter production and myelination in diverse brain regions of patients with ASD. This review is aimed to summarize the most recent evidence that supports the notion that abnormalities in the oligodendrocyte generation and axonal myelination in specific brain regions are involved in the pathophysiology of ASD. Fundamental molecular mediators of these pathological processes are also examined. Determining the role of alterations in oligodendrogenesis and myelination is a fundamental step to understand the pathophysiology of ASD and identify possible therapeutic targets.


2016 ◽  
Vol 14 (2) ◽  
pp. 13-19
Author(s):  
N.V. Solovyeva ◽  
N.S. Kitsul

Different syndromes hide under the mask of autism. Each is caused by a certain genetic fault disturbing the development of the brain and leading to symptoms of autism showing. A correctly done genetic diagnosis helps to avoid mistakes when choosing a way of treatment. The focus of this article is Phelan-McDermid Syndrome, an autism spectrum disorder. The clinical example provided is Sasha’s story: how his treatment changed after specifying the diagnosis.


2021 ◽  
Author(s):  
Katherine Kuhl Meltzoff Stavropoulos ◽  
Elizabeth Baker

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social-communication deficits and the presence of restricted interests and/or repetitive behaviors. There are currently no psychopharmacological agents approved to treat core symptoms of ASD. As such, behavioral interventions are the most effective method for improving symptoms. In the current chapter, we propose that administering the neuropeptide oxytocin in conjunction with evidence-based behavioral interventions may lead to improved outcomes in social-communication for children with ASD. From a mechanistic perspective, we hypothesize that oxytocin may “prime” social reward circuitry in the brain, thereby allowing behavioral interventions designed to increase social motivation/initiation to be more effective. Extant literature related to theories of ASD, oxytocin administration in children with ASD, and behavioral intervention outcomes are reviewed, and considerations for individual characteristics (e.g., genetics, oxytocin availability, age, behavioral profile, etc.) that may affect efficacy are discussed.


Autism ◽  
2017 ◽  
Vol 22 (6) ◽  
pp. 712-727 ◽  
Author(s):  
Lize De Coster ◽  
Jan R Wiersema ◽  
Eliane Deschrijver ◽  
Marcel Brass

Autism spectrum disorder is a neurodevelopmental disorder that is associated with problems in empathy. Recent research suggests that impaired control over self–other overlap based on motor representations in individuals with autism spectrum disorder might underlie these difficulties. In order to investigate the relationship of self–other distinction and empathy for pain in high-functioning autism and matched controls, we manipulated self–other distinction by using a paradigm in which participants are either imitated or not by a hand on a computer screen. A strong pain stimulus is then inflicted on the observed hand. Behavioral and physiological results in this study showed that overall affective responses while watching pain movies were the same in adults with high-functioning autism as in controls. Furthermore, controls showed higher affective responding after being imitated during the whole experiment, replicating previous studies. Adults with high-functioning autism, however, showed increased empathic responses over time after being imitated. Further exploratory analyses suggested that while affective responding was initially lower after being imitated compared to not being imitated, affective responding in the latter part of the experiment was higher after being imitated. These results shed new light on empathic abilities in high-functioning autism and on the role of control over self–other representational sharing.


2017 ◽  
Vol 41 (S1) ◽  
pp. S457-S457
Author(s):  
E. Zaky

BackgroundAutism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder that is characterized by impaired social and communicative abilities as well as restricted, repetitive, stereotyped pattern of behaviors, interests, and activities. Significant difficulties in social interactions in autistics are manifested by impairment in eye-to-eye contact, social reciprocity, and response to emotional cues.ObjectiveHighlighting the neurological basis of normal face processing and its abnormalities in ASD with percussions on the management plan of autistic children.SummaryHuman face processing that was proved to be compromised in autistic individuals is pivotal for proper social interactions. Such simple spontaneous perceptual task in normal children is carried out by face processing areas of the brain; fusiform gyrus, superior temporal sulcus, and amygdala. Behavioral, electrophysiological, and neuroimaging studies showed evidences of dysfunction of such areas in autistics who often focus on face periphery and cannot interpret that it tells something about a person's state of mind. Very early targeted intervention can stimulate face processing areas of the brain during the early developmental phases of social brain circuitry which in turn will help autistics to pay attention to faces and learn to understand emotional expressions.ConclusionEventually, prevention or at least significant amelioration of severity and symptomatology spectrum of autism might be possible.Disclosure of interestThe author have not supplied his declaration of competing interest.


2020 ◽  
Vol 21 (21) ◽  
pp. 8290 ◽  
Author(s):  
Elena Masini ◽  
Eleonora Loi ◽  
Ana Florencia Vega-Benedetti ◽  
Marinella Carta ◽  
Giuseppe Doneddu ◽  
...  

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social interaction and communication, with restricted interests, activity and behaviors. ASD is highly familial, indicating that genetic background strongly contributes to the development of this condition. However, only a fraction of the total number of genes thought to be associated with the condition have been discovered. Moreover, other factors may play an important role in ASD onset. In fact, it has been shown that parental conditions and in utero and perinatal factors may contribute to ASD etiology. More recently, epigenetic changes, including DNA methylation and micro RNA alterations, have been associated with ASD and proposed as potential biomarkers. This review aims to provide a summary of the literature regarding ASD candidate genes, mainly focusing on synapse formation and functionality and relevant epigenetic and environmental aspects acting in concert to determine ASD onset.


Author(s):  
Neda Ghobadi Samian ◽  
Keivan Maghooli ◽  
Fardad Farokhi

Purpose: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that is characterized by impaired social interactions. Early detection can prevent the progression of the disease. So far, much research has been done to better diagnose autism. Investigation of brain structure using Magnetic Resonance Imaging (MRI) provides valuable information on the evolution of the brain of patients with autism.   Materials and Methods: In this study, we equally selected T1-MRI data from 20 control subjects and 20 patients, aged under 13 years (male and female, right hand and left hand). MRI research has shown that the brain of autistic children has grown locally and globally. In this paper, for the brain volumetric evaluation of autistic patients, the MRI data was segmented and then analyzed with a statistical method, which has been investigated more generally, in both the cortical and subcortical areas. Results: We extracted 110 cortical and subcortical brain areas. The statistical analysis show which areas are important in discriminant between ASD and healthy control groups. According to the results of MRI, an increase in overall growth is seen in the subcortical areas of the brain (amygdala and hippocampus) as well as the cerebellum, but in adults with autism, a decrease in brain volume is seen. Conclusion: In this study, we analyze the T1-MRI data of ASD subjects for early detection of Autism disorder. Our results were shown in the 6 brain areas that have P-values under 0.005. These areas are important in the early detestation and treatment of ASD.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Tegan Sellick ◽  
Alexandra Ure ◽  
Katrina Williams

Abstract Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder defined by persistent deficits in social functioning and the presence of restricted and repetitive behaviours (RRBs). RRBs refer to four subtypes of behaviour including repetitive movements, speech, or use of objects; insistence on sameness; restricted interests; and sensory processing abnormalities. Many individuals with ASD also experience anxiety, which compounds ASD-related difficulties and inhibits daily functioning. RRBs have been found to be positively associated with anxiety; however, our understanding of the interplay between RRB subtypes and anxiety remains unclear. Thus, the current review aims to clarify the association between RRBs and anxiety by conducting a systematic review and meta-analysis. Methods To identify relevant studies, we will search five databases: CINAHL Plus, Cochrane Central Register of Controlled Trials, Ovid MEDLINE, PsycINFO, and Scopus. Articles included in the review will have their titles, abstracts, and full texts reviewed by two independent authors and their methodological quality assessed via the modified Newcastle-Ottawa Scale. Random-effects meta-analyses will then be conducted to calculate the pooled association between RRB subtypes and anxiety. Sensitivity analyses will also be conducted to assess the potential impact of bias, missing data, outliers, and methodological differences on this relationship. Additionally, this review will collate the factors which may influence the anxiety-RRB relationship to help identify who is most vulnerable to developing anxiety. Discussion This will be the first review to examine the association between the four subtypes of RRBs and anxiety in individuals with ASD. Understanding this relationship, and the factors associated with this, may help clinicians understand the different underpinnings and presentations of anxiety within this population with potential implications for assessment and treatment. Systematic review registration PROSPERO CRD42020185434


Sign in / Sign up

Export Citation Format

Share Document