scholarly journals Can Artificial Intelligence Improve the Management of Pneumonia

2020 ◽  
Vol 9 (1) ◽  
pp. 248 ◽  
Author(s):  
Mariana Chumbita ◽  
Catia Cillóniz ◽  
Pedro Puerta-Alcalde ◽  
Estela Moreno-García ◽  
Gemma Sanjuan ◽  
...  

The use of artificial intelligence (AI) to support clinical medical decisions is a rather promising concept. There are two important factors that have driven these advances: the availability of data from electronic health records (EHR) and progress made in computational performance. These two concepts are interrelated with respect to complex mathematical functions such as machine learning (ML) or neural networks (NN). Indeed, some published articles have already demonstrated the potential of these approaches in medicine. When considering the diagnosis and management of pneumonia, the use of AI and chest X-ray (CXR) images primarily have been indicative of early diagnosis, prompt antimicrobial therapy, and ultimately, better prognosis. Coupled with this is the growing research involving empirical therapy and mortality prediction, too. Maximizing the power of NN, the majority of studies have reported high accuracy rates in their predictions. As AI can handle large amounts of data and execute mathematical functions such as machine learning and neural networks, AI can be revolutionary in supporting the clinical decision-making processes. In this review, we describe and discuss the most relevant studies of AI in pneumonia.

2021 ◽  
Vol 29 (Supplement_1) ◽  
pp. i18-i18
Author(s):  
N Hassan ◽  
R Slight ◽  
D Weiand ◽  
A Vellinga ◽  
G Morgan ◽  
...  

Abstract Introduction Sepsis is a life-threatening condition that is associated with increased mortality. Artificial intelligence tools can inform clinical decision making by flagging patients who may be at risk of developing infection and subsequent sepsis and assist clinicians with their care management. Aim To identify the optimal set of predictors used to train machine learning algorithms to predict the likelihood of an infection and subsequent sepsis and inform clinical decision making. Methods This systematic review was registered in PROSPERO database (CRD42020158685). We searched 3 large databases: Medline, Cumulative Index of Nursing and Allied Health Literature, and Embase, using appropriate search terms. We included quantitative primary research studies that focused on sepsis prediction associated with bacterial infection in adult population (>18 years) in all care settings, which included data on predictors to develop machine learning algorithms. The timeframe of the search was 1st January 2000 till the 25th November 2019. Data extraction was performed using a data extraction sheet, and a narrative synthesis of eligible studies was undertaken. Narrative analysis was used to arrange the data into key areas, and compare and contrast between the content of included studies. Quality assessment was performed using Newcastle-Ottawa Quality Assessment scale, which was used to evaluate the quality of non-randomized studies. Bias was not assessed due to the non-randomised nature of the included studies. Results Fifteen articles met our inclusion criteria (Figure 1). We identified 194 predictors that were used to train machine learning algorithms to predict infection and subsequent sepsis, with 13 predictors used on average across all included studies. The most significant predictors included age, gender, smoking, alcohol intake, heart rate, blood pressure, lactate level, cardiovascular disease, endocrine disease, cancer, chronic kidney disease (eGFR<60ml/min), white blood cell count, liver dysfunction, surgical approach (open or minimally invasive), and pre-operative haematocrit < 30%. These predictors were used for the development of all the algorithms in the fifteen articles. All included studies used artificial intelligence techniques to predict the likelihood of sepsis, with average sensitivity 77.5±19.27, and average specificity 69.45±21.25. Conclusion The type of predictors used were found to influence the predictive power and predictive timeframe of the developed machine learning algorithm. Two strengths of our review were that we included studies published since the first definition of sepsis was published in 2001, and identified factors that can improve the predictive ability of algorithms. However, we note that the included studies had some limitations, with three studies not validating the models that they developed, and many tools limited by either their reduced specificity or sensitivity or both. This work has important implications for practice, as predicting the likelihood of sepsis can help inform the management of patients and concentrate finite resources to those patients who are most at risk. Producing a set of predictors can also guide future studies in developing more sensitive and specific algorithms with increased predictive time window to allow for preventive clinical measures.


EBioMedicine ◽  
2019 ◽  
Vol 46 ◽  
pp. 27-29 ◽  
Author(s):  
Carolina Garcia-Vidal ◽  
Gemma Sanjuan ◽  
Pedro Puerta-Alcalde ◽  
Estela Moreno-García ◽  
Alex Soriano

Author(s):  
Jayant Kumar A Rathod ◽  
Naveen Bhavani ◽  
Prenita Prinsal Saldanha ◽  
Preethi M Rao ◽  
Prasad Patil

Artificial Intelligence and Machine Learning are two fields that are causing substantial development in every field specifically in the field of medical sciences; for the stupendous potential that it can provide to assist the clinicians, researchers, in clinical decision making, automate time consuming procedures, medical imaging, and more. Most implementations of AI/ML rely on static data set, and this where the big data steps in. That is, these models are developed and trained on a data set that is already recorded and have been diligently reviewed for accuracy; leading to a precise decision-making process. Experts foresee that AI/ML based overarching care system will develop high-quality patient care and innovative research, aiding advanced decision support tools. In this paper we shall realize what are the current devices that are build and are being used for real time problem solving, also discuss the impact of Software as a Medical Device (SAMD) in future of medical sciences. [2,3,11]


2021 ◽  
Vol 11 (9) ◽  
pp. 893
Author(s):  
Francesca Bottino ◽  
Emanuela Tagliente ◽  
Luca Pasquini ◽  
Alberto Di Napoli ◽  
Martina Lucignani ◽  
...  

More than a year has passed since the report of the first case of coronavirus disease 2019 (COVID), and increasing deaths continue to occur. Minimizing the time required for resource allocation and clinical decision making, such as triage, choice of ventilation modes and admission to the intensive care unit is important. Machine learning techniques are acquiring an increasingly sought-after role in predicting the outcome of COVID patients. Particularly, the use of baseline machine learning techniques is rapidly developing in COVID mortality prediction, since a mortality prediction model could rapidly and effectively help clinical decision-making for COVID patients at imminent risk of death. Recent studies reviewed predictive models for SARS-CoV-2 diagnosis, severity, length of hospital stay, intensive care unit admission or mechanical ventilation modes outcomes; however, systematic reviews focused on prediction of COVID mortality outcome with machine learning methods are lacking in the literature. The present review looked into the studies that implemented machine learning, including deep learning, methods in COVID mortality prediction thus trying to present the existing published literature and to provide possible explanations of the best results that the studies obtained. The study also discussed challenging aspects of current studies, providing suggestions for future developments.


Author(s):  
Prashant Johri ◽  
Vivek sen Saxena ◽  
Avneesh Kumar

With the continuous improvement of digital imaging technology and rapid increase in the use of digital medical records in last decade, artificial intelligence has provided various techniques to analyze these data. Machine learning, a subset of artificial intelligence techniques, provides the ability to learn from past and present and to predict the future on the basis of data. Various AI-enabled support systems are designed by using machine learning algorithms in order to optimize and computerize the process of clinical decision making and to bring about a massive archetype change in the healthcare sector such as timely identification, revealing and treatment of disease, as well as outcome prediction. Machine learning algorithms are implemented in the healthcare sector and helped in diagnosis of critical illness such as cancer, neurology, cardiac, and kidney disease as well as with easing in anticipation of disease progression. By applying and executing machine learning algorithms over healthcare data, one can evaluate, analyze, and generate the results that can be used not only to advance the prior health studies but also to aid in forecasting a patient's chances of developing of various diseases. The aim in this article is to present an overview of machine learning and to cover various algorithms of machine learning and their present implementation in the healthcare sector.


Author(s):  
Ines de Santiago ◽  
Lukasz Polanski

Advances in machine learning (ML) and artificial intelligence (AI) are transforming the way we treat patients in ways not even imagined a few years ago. Cancer research is at the forefront of this movement. Infertility, though not a life-threatening condition, affects around 15% of couples trying for a pregnancy. Increasing availability of large datasets from various sources creates an opportunity to introduce ML and AI into infertility prevention and treatment. At present in the field of assisted reproduction, very little is done in order to prevent infertility from arising, with the main focus put on treatment when often advanced maternal age and low ovarian reserve make it very difficult to conceive. A shift from this disease-centric model to a health centric model in infertility is already taking place with more emphasis on the patient as an active participator in the process. Poor quality and incomplete data as well as biological variability remain the main limitations in the widespread and reliable implementation of AI in the field of reproductive medicine. That said, one of the areas where this technology managed to find a foothold is identification of developmentally competent embryos. More work is required however to learn about ways to improve natural conception, the detection and diagnosis of infertility, and improve assisted reproduction treatments (ART) and ultimately, develop clinically useful algorithms able to adjust treatment regimens in order to assure a successful outcome of either fertility preservation or infertility treatment. Progress in genomics, digital technologies and advances in integrative biology has had a tremendousimpact on research and clinical medicine. With the rise of ‘big data’, artificial intelligence, and the advances in molecular profiling, there is an enormous potential to transform not only scientific research progress, but also clinical decision making towards predictive, preventive, and personalized medicine. In the field of reproductive health, there is now an exciting opportunity to leverage these technologies and develop more sophisticated approaches to diagnose and treat infertility disorders. In this review, we present a comprehensive analysis and interpretation of different innovation forces that are driving the emergence of a system approach to the infertility sector. Here we discuss recent influential work and explore the limitations of the use of Machine Learning models in this rapidly developing area.


2021 ◽  
Vol 8 ◽  
Author(s):  
Miao Wu ◽  
Xianjin Du ◽  
Raymond Gu ◽  
Jie Wei

Sepsis is one of the main causes of death in critically ill patients. Despite the continuous development of medical technology in recent years, its morbidity and mortality are still high. This is mainly related to the delay in starting treatment and non-adherence of clinical guidelines. Artificial intelligence (AI) is an evolving field in medicine, which has been used to develop a variety of innovative Clinical Decision Support Systems. It has shown great potential in predicting the clinical condition of patients and assisting in clinical decision-making. AI-derived algorithms can be applied to multiple stages of sepsis, such as early prediction, prognosis assessment, mortality prediction, and optimal management. This review describes the latest literature on AI for clinical decision support in sepsis, and outlines the application of AI in the prediction, diagnosis, subphenotyping, prognosis assessment, and clinical management of sepsis. In addition, we discussed the challenges of implementing and accepting this non-traditional methodology for clinical purposes.


Med ◽  
2021 ◽  
Author(s):  
Lorenz Adlung ◽  
Yotam Cohen ◽  
Uria Mor ◽  
Eran Elinav

Author(s):  
E. Amiri Souri ◽  
A. Chenoweth ◽  
A. Cheung ◽  
S. N. Karagiannis ◽  
S. Tsoka

Abstract Background Prognostic stratification of breast cancers remains a challenge to improve clinical decision making. We employ machine learning on breast cancer transcriptomics from multiple studies to link the expression of specific genes to histological grade and classify tumours into a more or less aggressive prognostic type. Materials and methods Microarray data of 5031 untreated breast tumours spanning 33 published datasets and corresponding clinical data were integrated. A machine learning model based on gradient boosted trees was trained on histological grade-1 and grade-3 samples. The resulting predictive model (Cancer Grade Model, CGM) was applied on samples of grade-2 and unknown-grade (3029) for prognostic risk classification. Results A 70-gene signature for assessing clinical risk was identified and was shown to be 90% accurate when tested on known histological-grade samples. The predictive framework was validated through survival analysis and showed robust prognostic performance. CGM was cross-referenced with existing genomic tests and demonstrated the competitive predictive power of tumour risk. Conclusions CGM is able to classify tumours into better-defined prognostic categories without employing information on tumour size, stage, or subgroups. The model offers means to improve prognosis and support the clinical decision and precision treatments, thereby potentially contributing to preventing underdiagnosis of high-risk tumours and minimising over-treatment of low-risk disease.


2021 ◽  
Vol 28 (1) ◽  
pp. e100251
Author(s):  
Ian Scott ◽  
Stacey Carter ◽  
Enrico Coiera

Machine learning algorithms are being used to screen and diagnose disease, prognosticate and predict therapeutic responses. Hundreds of new algorithms are being developed, but whether they improve clinical decision making and patient outcomes remains uncertain. If clinicians are to use algorithms, they need to be reassured that key issues relating to their validity, utility, feasibility, safety and ethical use have been addressed. We propose a checklist of 10 questions that clinicians can ask of those advocating for the use of a particular algorithm, but which do not expect clinicians, as non-experts, to demonstrate mastery over what can be highly complex statistical and computational concepts. The questions are: (1) What is the purpose and context of the algorithm? (2) How good were the data used to train the algorithm? (3) Were there sufficient data to train the algorithm? (4) How well does the algorithm perform? (5) Is the algorithm transferable to new clinical settings? (6) Are the outputs of the algorithm clinically intelligible? (7) How will this algorithm fit into and complement current workflows? (8) Has use of the algorithm been shown to improve patient care and outcomes? (9) Could the algorithm cause patient harm? and (10) Does use of the algorithm raise ethical, legal or social concerns? We provide examples where an algorithm may raise concerns and apply the checklist to a recent review of diagnostic imaging applications. This checklist aims to assist clinicians in assessing algorithm readiness for routine care and identify situations where further refinement and evaluation is required prior to large-scale use.


Sign in / Sign up

Export Citation Format

Share Document