scholarly journals Fabrication of Fiber Reinforced Plastics by Ultrasonic Welding

2018 ◽  
Vol 2 (3) ◽  
pp. 56
Author(s):  
Andreas Gomer ◽  
Wei Zou ◽  
Niels Grigat ◽  
Johannes Sackmann ◽  
Werner Schomburg

Ultrasonic fabrication of fiber reinforced plastics made from thermoplastic polymer films and carbon or glass fibers enables cycle times of a few seconds and requires investment costs of only some 10,000 €. Besides this, the raw materials can be stored at room temperature. A fiber content of 33 vol % and a tensile strength of approximately 1.2 GPa have been achieved by ultrasonic welding of nine layers of foils from polyamide, each 100 µm in thickness, and eight layers of carbon fibers, each 100 µm in thickness, in between. Besides unidirectional carbon fiber reinforced polymer composite (CFRP) samples, multi-directional CFRP plates, 116 mm, 64 mm and 1.2 mm in length, width and thickness respectively, were fabricated by processing three layers of carbon fiber canvas, each 300 µm in thickness, and eight layers of polyamide foils, each 100 µm in thickness. Furthermore, both the discontinuous and the continuous ultrasonic fabrication processes are described and the results are presented in this paper. Large-scale production still needs to be demonstrated.

2015 ◽  
Vol 825-826 ◽  
pp. 779-786 ◽  
Author(s):  
Katharina Arnaut ◽  
Patrick Schiebel ◽  
Anna Lang ◽  
Axel S. Herrmann

Large-scale production of carbon fiber reinforced plastics often fails due to the increased material and manufacturing costs. Using the lightweight potential for competitive costs of materials, new construction methods are necessary, which enables an intelligent use of continuous fiber reinforcement, a largely automated production process as well as short cycle times. [1] The combination of continuous fiber reinforcement in the areas of maximum loads and cheaper materials such as long-fiber reinforced thermoplastic offers an efficient material application. Thereby, a required ratio of mechanical properties and attractive cost profile can be achieved.


2021 ◽  
Author(s):  
Vicky Reichel ◽  
Jan Beuscher ◽  
André Hürkamp ◽  
Klaus Dröder

Hybrid structures made of fiber-reinforced plastics (FRP) and metals are currently in focus of research and industry to develop weight reduced and functional optimized components for lightweight solutions. Manufacturing processes were adapted and developed to produce components based on hybrid materials with high economic efficiency. The cutting process is used to pre-assemble the semi-finished products or to post-process the edges of consolidated parts. The mechanisms of damage edge behavior and possible cutting qualities on these parts are not investigated jet. To close this knowledge gap and to support the future application of hybrid FRP-Metal-Laminates different cutting procedures were studied. This paper shows the process related dependences on the failure behavior of two dimensional specimens. The failure modes are described via quality characteristics like surface roughness, trueness and precision of the cut as well as influences of aging processes. In the end optimized parameter for each process are shown and compared under technical and economic criteria for large scale production. In the scope of this work an experimental study of piercing of glass and carbon fiber reinforced thermoplastic with different steel and bonding agents at different cutting sequences were performed. It was shown that the cutting edge geometry significantly differs. Possible mechanical explanations of the dependencies were formulated. Also the accuracy of the cuts was evaluated which showed a higher accuracy for the steel component. The measurements on the surface roughness could not show any dependencies and relations.


2021 ◽  
pp. 28-37
Author(s):  
P. N. Shkatov ◽  
G. A. Didin ◽  
A. A. Ermolaev

The paper is concerned with increasing sensitivity of eddy current nondestructive testing of most dangerous delamination in carbon-fiber reinforced plastics (CFRP). Increased sensitivity is achieved by separate registration and comparison of eddy current signals obtained from a set of stratifications of carbon fibers with the same orientation. The separation of eddy current signals is possible due to pronounced anisotropy of the electrical conductivity of the layers dominant in the direction of the fibers of the corresponding layer. Eddy-current signals are registered by eddy current probes with maximum sensitivity in a given angular direction. Prior to the scan eddy current signals of the probe are leveled on a defect-free area. The influence of the working gap on the difference between the eddy current signals of the probe is suppressed by normalizing it according to one of the signals. The analysis of the registered signals from delamination has been performed using an approximate calculation model. The reliability of the obtained results has been confirmed by comparison with experimental results and calculations using the finite element method.


Sign in / Sign up

Export Citation Format

Share Document