scholarly journals Infrequent Placental and Fetal Involvement in SARS-CoV-2 Infection: Pathology Data from a Large Medical Center

2021 ◽  
Vol 9 (4) ◽  
pp. 45
Author(s):  
Jeffrey Thomas ◽  
Yu Sun ◽  
Larisa Debelenko

In order to determine the frequency of SARS-CoV-2 placental and fetal involvements, we analyzed placentas of 197 women positive for infection at delivery and fetal tissues in cases of pregnancy loss in women positive by SARS-CoV-2 PCR (N = 2) and COVID-19 serology (N = 4), using in situ hybridization (ISH), immunohistochemistry (IHC) and, in selected cases, RT-PCR of tissue homogenates. The virus was identified in situ, accompanied by intervillositis, in 2 of 197 placentas (1.02%). In three more cases, SARS-CoV-2 was detected by tissue PCR without in situ localization and placental inflammation. There were no maternal mortality or association of placental infection with the clinical severity of COVID-19. All tested neonates born to SARS-CoV-2-positive women (N = 172) were negative for the virus. There were three pregnancy losses among 197 infected women and in two cases available fetal tissues were negative for SARS-CoV-2. In one of four fetal autopsies performed in women with positive COVID-19 serology, the mother-to-child transmission (MTCT) could be inferred based on positive SARS-CoV-2 nucleocapsid IHC in fetal pulmonary endothelium. Placental involvement by SARS-CoV-2 is rare, but may be underestimated due to its transient nature. MTCT is even rarer, supporting the protective role of placenta in SARS-CoV-2 infection.

1983 ◽  
Vol 244 (5) ◽  
pp. E431-E434
Author(s):  
J. Caro ◽  
L. I. Zon ◽  
R. Silver ◽  
O. Miller ◽  
A. J. Erslev

An attempt to evaluate the role of the liver in extrarenal erythropoietin production was made by measuring the content of erythropoietin in homogenates and perfusates from hypoxic rat livers. Extracts from livers from nephric or anephric animals rendered both anemic and hypoxic showed no detectable erythropoietin despite the fact that both plasma and kidney extracts contained large amounts of erythropoietin. This lack of measurable erythropoietin in the liver is not caused by degradation of erythropoietin during the extraction procedure because exogenously added rat erythropoietin was recovered to the same extent from livers or kidney homogenates. More likely, however, it is caused by the fact that extrarenal erythropoietin production accounts for only one-fifth of total erythropoietin production and that the liver mass is about six times that of both kidneys. Consequently, the erythropoietin content of 1 g of liver should be about one-thirtieth of that of 1 g of kidney, an amount that is below the limit of detection of the assay. On the other hand, the 2-h in situ perfusates of livers from similarly stimulated animals contained significant amounts of secreted erythropoietin. It is concluded that the liver participates actively in extrarenal erythropoietin production in the adult rat. However, the small amount expected to be present in tissue homogenates cannot be detected with our current bioassay.


2014 ◽  
Vol 38 (4) ◽  
pp. 812-826 ◽  
Author(s):  
OTHMAR BUCHNER ◽  
MAGDALENA STOLL ◽  
MATTHIAS KARADAR ◽  
ILSE KRANNER ◽  
GILBERT NEUNER

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hongjie Li ◽  
Chang-Yu Sun ◽  
Yihang Fang ◽  
Caitlin M. Carlson ◽  
Huifang Xu ◽  
...  

AbstractAlthough calcareous anatomical structures have evolved in diverse animal groups, such structures have been unknown in insects. Here, we report the discovery of high-magnesium calcite [CaMg(CO3)2] armor overlaying the exoskeletons of major workers of the leaf-cutter ant Acromyrmex echinatior. Live-rearing and in vitro synthesis experiments indicate that the biomineral layer accumulates rapidly as ant workers mature, that the layer is continuously distributed, covering nearly the entire integument, and that the ant epicuticle catalyzes biomineral nucleation and growth. In situ nanoindentation demonstrates that the biomineral layer significantly hardens the exoskeleton. Increased survival of ant workers with biomineralized exoskeletons during aggressive encounters with other ants and reduced infection by entomopathogenic fungi demonstrate the protective role of the biomineral layer. The discovery of biogenic high-magnesium calcite in the relatively well-studied leaf-cutting ants suggests that calcareous biominerals enriched in magnesium may be more common in metazoans than previously recognized.


2020 ◽  
Author(s):  
Hongjie Li ◽  
Chang-Yu Sun ◽  
Yihang Fang ◽  
Caitlin M. Carlson ◽  
Huifang Xu ◽  
...  

AbstractAlthough calcareous anatomical structures have evolved in diverse animal groups, such structures have been unknown in insects. Here, we report the discovery of high-magnesium calcite [CaMg(CO3)2] armor overlaying the exoskeletons of major workers of the leaf-cutter ant Acromyrmex echinatior. Live-rearing and in vitro synthesis experiments indicate that the biomineral layer accumulates rapidly as ant workers mature, that the layer is continuously distributed, covering nearly the entire integument, and that the ant epicuticle catalyzes biomineral nucleation and growth. In situ nanoindentation demonstrates that the biomineral layer significantly hardens the exoskeleton. Increased survival of ant workers with biomineralized exoskeletons during aggressive encounters with other ants and reduced infection by entomopathogenic fungi demonstrate the protective role of the biomineral layer. The discovery of biosynthesized high-magnesium calcite in the relatively well-studied leaf-cutting ants suggests that calcareous biominerals enriched in magnesium may be more common in metazoans than previously recognized.


2002 ◽  
Vol 283 (2) ◽  
pp. H688-H694 ◽  
Author(s):  
Sreesatya Raju Vulapalli ◽  
Zhongyi Chen ◽  
Balvin H. L. Chua ◽  
Tingchung Wang ◽  
Chang-Seng Liang

Heme oxygenase (HO)-1 converts heme to bilirubin, carbon monoxide, and iron. Our prior work has suggested a cardioprotective role for HO-1 in heart failure. To test whether HO-1 (heat shock protein 32) prevents cardiomyocyte apoptosis and cardiac dysfunction after ischemia-reperfusion (I/R), we generated transgenic mice overexpressing HO-1 in the heart under the control of the α-myosin heavy chain promoter. HO-1 transcript and protein increased markedly in the heart only. In an isolated heart preparation, we observed an enhanced functional recovery during reperfusion after ischemia in the transgenic hearts compared with nontransgenic controls. I/R injury was also performed in intact animals by coronary ligation and reperfusion to assess the protective role of HO-1 overexpression on heart apoptosis. HO-1 overexpression reduced cardiac apoptosis, as evidenced by fewer terminal deoxynucleodidyl transferase-mediated dUTP nick-end labeling-positive or in situ oligo ligation-positive myocytes, compared with nontransgenic mice. Our results indicate that cardioselective overexpression of HO-1 exerts a cardioprotective effect after myocardial I/R in mice, and this effect is probably mediated via an antiapoptotic action of HO-1.


2020 ◽  
Vol 134 (1) ◽  
pp. 71-72
Author(s):  
Naseer Ahmed ◽  
Masooma Naseem ◽  
Javeria Farooq

Abstract Recently, we have read with great interest the article published by Ibarrola et al. (Clin. Sci. (Lond.) (2018) 132, 1471–1485), which used proteomics and immunodetection methods to show that Galectin-3 (Gal-3) down-regulated the antioxidant peroxiredoxin-4 (Prx-4) in cardiac fibroblasts. Authors concluded that ‘antioxidant activity of Prx-4 had been identified as a protein down-regulated by Gal-3. Moreover, Gal-3 induced a decrease in total antioxidant capacity which resulted in a consequent increase in peroxide levels and oxidative stress markers in cardiac fibroblasts.’ We would like to point out some results stated in the article that need further investigation and more detailed discussion to clarify certain factors involved in the protective role of Prx-4 in heart failure.


2015 ◽  
Vol 36 (3) ◽  
pp. 170-176 ◽  
Author(s):  
Erin N. Stevens ◽  
Joseph R. Bardeen ◽  
Kyle W. Murdock

Parenting behaviors – specifically behaviors characterized by high control, intrusiveness, rejection, and overprotection – and effortful control have each been implicated in the development of anxiety pathology. However, little research has examined the protective role of effortful control in the relation between parenting and anxiety symptoms, specifically among adults. Thus, we sought to explore the unique and interactive effects of parenting and effortful control on anxiety among adults (N = 162). Results suggest that effortful control uniquely contributes to anxiety symptoms above and beyond that of any parenting behavior. Furthermore, effortful control acted as a moderator of the relationship between parental overprotection and anxiety, such that overprotection is associated with anxiety only in individuals with lower levels of effortful control. Implications for potential prevention and intervention efforts which specifically target effortful control are discussed. These findings underscore the importance of considering individual differences in self-regulatory abilities when examining associations between putative early-life risk factors, such as parenting, and anxiety symptoms.


Sign in / Sign up

Export Citation Format

Share Document