scholarly journals Bayesian Activity Estimation and Uncertainty Quantification of Spent Nuclear Fuel Using Passive Gamma Emission Tomography

2021 ◽  
Vol 7 (10) ◽  
pp. 212
Author(s):  
Ahmed Karam Eldaly ◽  
Ming Fang ◽  
Angela Di Fulvio ◽  
Stephen McLaughlin ◽  
Mike E. Davies ◽  
...  

In this paper, we address the problem of activity estimation in passive gamma emission tomography (PGET) of spent nuclear fuel. Two different noise models are considered and compared, namely, the isotropic Gaussian and the Poisson noise models. The problem is formulated within a Bayesian framework as a linear inverse problem and prior distributions are assigned to the unknown model parameters. In particular, a Bernoulli-truncated Gaussian prior model is considered to promote sparse pin configurations. A Markov chain Monte Carlo (MCMC) method, based on a split and augmented Gibbs sampler, is then used to sample the posterior distribution of the unknown parameters. The proposed algorithm is first validated by simulations conducted using synthetic data, generated using the nominal models. We then consider more realistic data simulated using a bespoke simulator, whose forward model is non-linear and not available analytically. In that case, the linear models used are mis-specified and we analyse their robustness for activity estimation. The results demonstrate superior performance of the proposed approach in estimating the pin activities in different assembly patterns, in addition to being able to quantify their uncertainty measures, in comparison with existing methods.

2019 ◽  
Vol 66 (1) ◽  
pp. 487-496
Author(s):  
Camille Belanger-Champagne ◽  
Pauli Peura ◽  
Paula Eerola ◽  
Tapani Honkamaa ◽  
Timothy White ◽  
...  

Author(s):  
Mikhail Mayorov ◽  
Timothy White ◽  
Alain Lebrun ◽  
Joerg Brutscher ◽  
Jens Keubler ◽  
...  

2020 ◽  
Vol 14 (2) ◽  
pp. 317-337 ◽  
Author(s):  
Rasmus Backholm ◽  
◽  
Tatiana A. Bubba ◽  
Samuli Siltanen ◽  
Camille Bélanger-Champagne ◽  
...  

2021 ◽  
Vol 7 ◽  
Author(s):  
Peter Jansson

An idea is presented in which passive gamma emission tomography of irradiated nuclear fuel is developed to enable quantitative information of the spatial activity distribution of selected isotopes within the fuel rods of the assembly. The idea is based on using well-known calibration sources mounted in the measurement device during measurement. The image reconstruction would include the sources, thereby enable quantification of the activity distribution. Should the idea be proven viable, the outcome would be valuable to the global community dealing with characterisation of nuclear fuel in terms of safety, security, safeguards and fuel development.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Peter Andersson ◽  
Vikram Rathore ◽  
Lorenzo Senis ◽  
Anastasios Anastasiadis ◽  
Erik Andersson Sundén ◽  
...  

2019 ◽  
Vol 11 (22) ◽  
pp. 6364
Author(s):  
Sanggil Park ◽  
Min Bum Park

The OECD/NEA Spent Fuel Pool (SFP) project was conducted to investigate consequences of spent nuclear fuel pool accident scenarios. From the project, it was observed that cladding temperature could abruptly increase at a certain point and the cladding was completely oxidized. This phenomenon was called a “zirconium fire”. This zirconium fire is one of the crucial concerns for spent fuel pool safety under a postulated loss of coolant accident scenario, since it would lead to an uncontrolled mass release of fission products into the environment. To capture this critical phenomenon, an air-oxidation breakaway model has been implemented in the MELCOR code. This study examines this air-oxidation breakaway model by comparing the SFP project test data with a series of MELCOR code sensitivity calculation results. The air-oxidation model parameters are slightly altered to investigate their sensitivities on the occurrence of the zirconium fire. Through such sensitivity analysis, limitations of the air-oxidation breakaway model are identified, and needs for model improvement is recommended.


2012 ◽  
Vol 1444 ◽  
Author(s):  
Richard S. Wittman ◽  
Edgar C. Buck

ABSTRACTResults for a radiolysis model sensitivity study of radiolytically produced H2O2 are presented as they relate to Spent (or Used) Light Water Reactor uranium oxide (UO2) nuclear fuel (UNF) oxidation in a low oxygen environment. The model builds on previous reaction kinetic studies to represent the radiolytic processes occurring at the nuclear fuel surface. Hydrogen peroxide (H2O2) is the dominant oxidant for spent nuclear fuel in an O2-depleted water environment. The most sensitive parameters have been identified with respect to predictions under typical conditions. As compared with the full model with about 100 reactions, it was found that only 30 to 40 of the reactions are required to determine [H2O2] to one part in 10–5 and to preserve most of the predictions for major species. This allows a systematic approach for model simplification and offers guidance in designing experiments for validation.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 470
Author(s):  
Sanghoon Lee ◽  
Seyeon Kim

Spent nuclear fuel (SNF) is nuclear fuel that has been irradiated and discharged from nuclear reactors. During the whole management stages of SNF before it is, in the end, disposed in a deep geological repository, the structural integrity of fuel rods and the assemblies should be maintained for safety and economic reasons. In licensing applications for the SNF storage and transportation, the integrity of SNF needs to be evaluated considering various loading conditions. However, this is a challenging task due to the complexity of the geometry and properties of SNF. In this paper, a simple and equivalent analysis model for SNF rods is developed using model calibration based on optimization and process integration. The spent fuel rod is simplified into a hollow beam with a homogenous isotropic material, and the model parameters thus found are not dependent on the length of the reference fuel rod segment that is considered. Two distinct models with different interfacial conditions between the fuel pellets and cladding are used in the calibration to account for the effect of PCMI (Pellet-Clad Mechanical Interaction). The feasibility of the models in dynamic impact simulations is examined, and it is expected that the developed models can be utilized in the analysis of assembly-level analyses for the SNF integrity assessment during transportation and storage.


Sign in / Sign up

Export Citation Format

Share Document