scholarly journals Low-Power Audio Keyword Spotting Using Tsetlin Machines

2021 ◽  
Vol 11 (2) ◽  
pp. 18
Author(s):  
Jie Lei ◽  
Tousif Rahman ◽  
Rishad Shafik ◽  
Adrian Wheeldon ◽  
Alex Yakovlev ◽  
...  

The emergence of artificial intelligence (AI) driven keyword spotting (KWS) technologies has revolutionized human to machine interaction. Yet, the challenge of end-to-end energy efficiency, memory footprint and system complexity of current neural network (NN) powered AI-KWS pipelines has remained ever present. This paper evaluates KWS utilizing a learning automata powered machine learning algorithm called the Tsetlin Machine (TM). Through significant reduction in parameter requirements and choosing logic over arithmetic-based processing, the TM offers new opportunities for low-power KWS while maintaining high learning efficacy. In this paper, we explore a TM-based keyword spotting (KWS) pipeline to demonstrate low complexity with faster rate of convergence compared to NNs. Further, we investigate the scalability with increasing keywords and explore the potential for enabling low-power on-chip KWS.

Author(s):  
Jie Lei ◽  
Tousif Rahman ◽  
Rishad Shafik ◽  
Alex Yakovlev ◽  
Alex Yakovlev ◽  
...  

The emergence of Artificial Intelligence (AI) driven Keyword Spotting (KWS) technologies has revolutionized human to machine interaction. Yet, the challenge of end-to-end energy efficiency, memory footprint and system complexity of current Neural Network (NN) powered AI-KWS pipelines has remained ever present. This paper evaluates KWS utilizing a learning automata powered machine learning algorithm called the Tsetlin Machine (TM). Through significant reduction in parameter requirements and choosing logic over arithmetic based processing, the TM offers new opportunities for low-power KWS while maintaining high learning efficacy. In this paper we explore a TM based keyword spotting (KWS) pipeline to demonstrate low complexity with faster rate of convergence compared to NNs. Further, we investigate the scalability with increasing keywords and explore the potential for enabling low-power on-chip KWS.


2009 ◽  
Vol 18 (01) ◽  
pp. 45-57 ◽  
Author(s):  
CHIH-PENG FAN ◽  
CHIA-HAO FANG

In this paper, we present an address bus coding method to reduce dynamic power dissipations and delay faults at on-chip applications. The purpose of the proposed new coding technique is to diminish the switching and coupling activities on instruction address busses effectively. The proposed bus coding method is called the exclusive-OR and bus inverter transition signaling (XOR–BITS) code. The XOR–BITS code has four advantages. Firstly, it can save a large number of switching activities. Secondly, it can also save a large number of coupling activities. Thirdly, its architecture belongs to a low-complexity architecture. Finally, its delay is short after optimizations. Experimental results show that the XOR–BITS coding indicates an average reduction in 78.5% switching activities and 21.9% coupling activities on instruction address busses. It surpasses the other address coding methods in total power dissipations when the load capacitance is more than 1 pF/bit with the TSMC 0.13 μm CMOS technology. For a 50 pF/bit load capacitance, it achieves a 74.9% average reduction in total power dissipations, compared with the un-coded schemes by using seven benchmarks. Similarly, our method also surpasses the other address bus coding methods with the TSMC 0.18 μm CMOS technology.


2011 ◽  
Vol E94-C (10) ◽  
pp. 1698-1701
Author(s):  
Yang SUN ◽  
Chang-Jin JEONG ◽  
In-Young LEE ◽  
Sang-Gug LEE

Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Author(s):  
Ezz El-Din Hussein ◽  
Sally Safwat ◽  
Maged Ghoneima ◽  
Yehea Ismail
Keyword(s):  

2008 ◽  
Vol 55 (7) ◽  
pp. 1904-1910 ◽  
Author(s):  
Maged M. Ghoneima ◽  
Muhammad M. Khellah ◽  
James Tschanz ◽  
Yibin Ye ◽  
Nasser Kurd ◽  
...  
Keyword(s):  

Author(s):  
N Poornima ◽  
Seetharaman Gopalakrishnan ◽  
Tughrul Arsalan ◽  
T. N. Prabakar ◽  
M. Santhi

Sign in / Sign up

Export Citation Format

Share Document