scholarly journals Ship Type Recognition Based on Ship Navigating Trajectory and Convolutional Neural Network

2022 ◽  
Vol 10 (1) ◽  
pp. 84
Author(s):  
Tianyu Yang ◽  
Xin Wang ◽  
Zhengjiang Liu

With the aim to solve the problem of missing or tampering of ship type information in AIS information, in this paper, a novel ship type recognition scheme based on ship navigating trajectory and convolutional neural network (CNN) is proposed. Firstly, according to speed and acceleration of the ship, three ship navigating situations, i.e., static, normal navigation and maneuvering, are integrated into the process of trajectory images generation in the form of pixels. Then, three kinds of modular network structures with different depths are trained and optimized to determine the appropriate convolutional neural network structure. In the validation phase of the model, a large amount of verified data with a time span of one month was used, covering a variety of water conditions including open water, ports, rivers and lakes. Following this approach, a kind of CNN scheme which can be directly used to identify ship types in a wide range of waters is proposed. This scheme can be used to judge the ship type when the static information is completely missing and to test the data when the ship type information is partially missing.

2020 ◽  
pp. 1-11
Author(s):  
Jie Liu ◽  
Hongbo Zhao

BACKGROUND: Convolution neural network is often superior to other similar algorithms in image classification. Convolution layer and sub-sampling layer have the function of extracting sample features, and the feature of sharing weights greatly reduces the training parameters of the network. OBJECTIVE: This paper describes the improved convolution neural network structure, including convolution layer, sub-sampling layer and full connection layer. This paper also introduces five kinds of diseases and normal eye images reflected by the blood filament of the eyeball “yan.mat” data set, convenient to use MATLAB software for calculation. METHODSL: In this paper, we improve the structure of the classical LeNet-5 convolutional neural network, and design a network structure with different convolution kernels, different sub-sampling methods and different classifiers, and use this structure to solve the problem of ocular bloodstream disease recognition. RESULTS: The experimental results show that the improved convolutional neural network structure is ideal for the recognition of eye blood silk data set, which shows that the convolution neural network has the characteristics of strong classification and strong robustness. The improved structure can classify the diseases reflected by eyeball bloodstain well.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lingfeng Wang

The TV show rating analysis and prediction system can collect and transmit information more quickly and quickly upload the information to the database. The convolutional neural network is a multilayer neural network structure that simulates the operating mechanism of biological vision systems. It is a neural network composed of multiple convolutional layers and downsampling layers sequentially connected. It can obtain useful feature descriptions from original data and is an effective method to extract features from data. At present, convolutional neural networks have become a research hotspot in speech recognition, image recognition and classification, natural language processing, and other fields and have been widely and successfully applied in these fields. Therefore, this paper introduces the convolutional neural network structure to predict the TV program rating data. First, it briefly introduces artificial neural networks and deep learning methods and focuses on the algorithm principles of convolutional neural networks and support vector machines. Then, we improve the convolutional neural network to fit the TV program rating data and finally apply the two prediction models to the TV program rating data prediction. We improve the convolutional neural network TV program rating prediction model and combine the advantages of the convolutional neural network to extract effective features and good classification and prediction capabilities to improve the prediction accuracy. Through simulation comparison, we verify the feasibility and effectiveness of the TV program rating prediction model given in this article.


2021 ◽  
Author(s):  
Yuki Shimizu ◽  
Shigeo Morimoto ◽  
Masayuki Sanada ◽  
Yukinori Inoue

The optimal design of interior permanent magnet synchronous motors requires a long time because finite element analysis (FEA) is performed repeatedly. To solve this problem, many researchers have used artificial intelligence to construct a prediction model that can replace FEA. However, because the training data are generated by FEA, it takes a very long time to obtain a sufficient amount of data, making it impossible to train a large-scale prediction model. Here, we propose a method for generating a large amount of data from a small number of FEA results using machine learning. An automatic design system with a deep generative model and a convolutional neural network is then constructed. With its sufficient data, the proposed system can handle three topologies and three motor parameters in a wide range of current vector regions. The proposed system was applied to multi-objective optimization design, with the optimization completed in 13-15 seconds.


2021 ◽  
Author(s):  
Yuki Shimizu ◽  
Shigeo Morimoto ◽  
Masayuki Sanada ◽  
Yukinori Inoue

The optimal design of interior permanent magnet synchronous motors requires a long time because finite element analysis (FEA) is performed repeatedly. To solve this problem, many researchers have used artificial intelligence to construct a prediction model that can replace FEA. However, because the training data are generated by FEA, it takes a very long time to obtain a sufficient amount of data, making it impossible to train a large-scale prediction model. Here, we propose a method for generating a large amount of data from a small number of FEA results using machine learning. An automatic design system with a deep generative model and a convolutional neural network is then constructed. With its sufficient data, the proposed system can handle three topologies and three motor parameters in a wide range of current vector regions. The proposed system was applied to multi-objective optimization design, with the optimization completed in 13-15 seconds.


2020 ◽  
Author(s):  
Maria Kaselimi ◽  
Nikolaos Doulamis ◽  
Demitris Delikaraoglou

<p>Knowledge of the ionospheric electron density is essential for a wide range of applications, e.g., telecommunications, satellite positioning and navigation, and Earth observation from space. Therefore, considerable efforts have been concentrated on modeling this ionospheric parameter of interest. Ionospheric electron density is characterized by high complexity and is space−and time−varying, as it is highly dependent on local time, latitude, longitude, season, solar cycle and activity, and geomagnetic conditions. Daytime disturbances cause periodic changes in total electron content (diurnal variation) and additionally, there are multi-day periodicities, seasonal variations, latitudinal variations, or even ionospheric perturbations that cause fluctuations in signal transmission.</p><p>Because of its multiple band frequencies, the current Global Navigation Satellite Systems (GNSS) offer an excellent example of how we can infer ionosphere conditions from its effect on the radiosignals from different GNSS band frequencies. Thus, GNSS techniques provide a way of directly measuring the electron density in the ionosphere. The main advantage of such techniques is the provision of the integrated electron content measurements along the satellite-to-receiver line-of-sight at a large number of sites over a large geographic area.</p><p>Deep learning techniques are essential to reveal accurate ionospheric conditions and create representations at high levels of abstraction. These methods can successfully deal with non-linearity and complexity and are capable of identifying complex data patterns, achieving accurate ionosphere modeling. One application that has recently attracted considerable attention within the geodetic community is the possibility of applying these techniques in order to model the ionosphere delays based on GNSS satellite signals.</p><p>This paper deals with a modeling approach suitable for predicting the ionosphere delay at different locations of the IGS network stations using an adaptive Convolutional Neural Network (CNN). As experimental data we used actual GNSS observations from selected stations of the global IGS network which were participating in the still-ongoing MGEX project that provides various satellite signals from the currently available multiple navigation satellite systems. Slant TEC data (STEC) were obtained using the undifferenced and unconstrained PPP technique. The STEC data were provided by GAMP software and converted to VTEC data values. The proposed CNN uses the following basic information: GNSS signal azimuth and elevation angle, GNSS satellite position (x and y). Then, the adaptive CNN utilizes these data inputs along with the predicted VTEC values of the first CNN for the previous observation epochs. Topics to be discussed in the paper include the design of the CNN network structure, training strategy, data analysis, as well as preliminary testing results of the ionospheric delays predictions as compared with the IGS ionosphere products.   </p>


Sign in / Sign up

Export Citation Format

Share Document