scholarly journals Simulation of the Behavior of a Ship Hull under Grounding: Effect of Applied Element Size on Structural Crashworthiness

2019 ◽  
Vol 7 (8) ◽  
pp. 270 ◽  
Author(s):  
Aditya Rio Prabowo ◽  
Teguh Putranto ◽  
Jung Min Sohn

This work models the effect of an impact phenomenon—namely the interaction between seabed rock and a ship during its operations—on the ship structure. The collision between a tanker vessel with a conical rock is simulated, a scenario that is similar to the famous grounding of the Exxon Valdez oil tanker. The study uses finite element analysis to simulate numerical parameters that are related to structural response and the contours of the ship hull under impact loading. The traditional element-length-to-thickness (ELT) ratio of 10 is recommended in this work. ELT ratios in the range of 11 to 13 are shown to produce similar results in terms of internal energy, contact force, and structural acceleration. Additionally, the analysis time is reduced by approximately 20% for the recommended ELT ratio. This result is very helpful for researchers using finite element analysis to simulate ship accidents, since the mesh size or length of complex structures is used to maintain the efficiency and accuracy of the simulation results.

2007 ◽  
Vol 561-565 ◽  
pp. 757-760
Author(s):  
Yong Shou Liu ◽  
Jun Liu ◽  
An Qiang Wang ◽  
Zhu Feng Yue

In this paper, an amendment method for stress and strain of double-curved laminated composite is proposed and studied. According to finite element analysis results of the same model with two different mesh size (coarse mesh size 120mm× 300mm and refined mesh size 30mm× 30mm ), stress and strain have been amended with modified formula in user material subroutine (UMAT) subprogram so that the corrected results of model with coarse mesh is similar to the results of model with refined mesh. Using this method, with coarse mesh, a satisfied accuracy results still can be obtained without refining mesh. It’s efficient for design and analysis of complex structures.


2011 ◽  
Vol 213 ◽  
pp. 419-426
Author(s):  
M.M. Rahman ◽  
Hemin M. Mohyaldeen ◽  
M.M. Noor ◽  
K. Kadirgama ◽  
Rosli A. Bakar

Modeling and simulation are indispensable when dealing with complex engineering systems. This study deals with intelligent techniques modeling for linear response of suspension arm. The finite element analysis and Radial Basis Function Neural Network (RBFNN) technique is used to predict the response of suspension arm. The linear static analysis was performed utilizing the finite element analysis code. The neural network model has 3 inputs representing the load, mesh size and material while 4 output representing the maximum displacement, maximum Principal stress, von Mises and Tresca. Finally, regression analysis between finite element results and values predicted by the neural network model was made. It can be seen that the RBFNN proposed approach was found to be highly effective with least error in identification of stress-displacement of suspension arm. Simulated results show that RBF can be very successively used for reduction of the effort and time required to predict the stress-displacement response of suspension arm as FE methods usually deal with only a single problem for each run.


2011 ◽  
Vol 143-144 ◽  
pp. 437-442
Author(s):  
Bao Hong Tong ◽  
Yin Liu ◽  
Xiao Qian Sun ◽  
Xin Ming Cheng

A dynamic finite element analysis model for cylindrical roller bearing is developed, and the complex stress distribution and dynamic contacting nature of the bearing are investigated carefully based on ANSYS/LS-DYNA. Numerical simulation results show that the stress would be bigger when the element contacting with the inner or outer ring than at other times, and the biggest stress would appear near the area that roller contacting with the inner ring. Phenomenon of stress concentration on the roller is found to be very obvious during the operating process of the bearing system. The stress distributions of different elements are uneven on the same side surface of roller in its axis direction. Numerical simulation results can give useful references for the design and analysis of rolling bearing.


Jurnal METTEK ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Angga Restu Pahlawan ◽  
Rizal Hanifi ◽  
Aa Santosa

Frame adalah salah satu komponen yang sangat penting dalam sebuah kendaraan, yang berfungsi sebagai penopang penumpang, mesin, suspensi, sistem kelistrikan dan lain-lain. Melihat fungsi dari frame sangat penting, maka dalam merancang sebuah frame harus diperhitungkan dengan baik. Banyak sekali jenis pengujian yang sering dipakai dalam perancangan sebuah struktur frame, salah satunya adalah digunakannya metode komputasi dengan menggunakan metode Finite Element Analysis (FEA). Tujuan dari penelitian ini adalah untuk mengetahui distribusi tegangan, regangan, displacement, dan safety factor dari hasil pembebanan statis pada frame gokar. Struktur frame didesain dan dianalisis menggunakan software Solidworks 2016. Material yang digunakan frame adalah baja AISI 1045 hollow tube 273,2 mm, dengan menggunakan pembebanan pengendara sebesar 50 kg dan 70 kg. Hasil dari perhitungan manual didapatkan tegangan maksimum sebesar 4,735  107 N/m2, sedangkan dari simulasi didapatkan sebesar 4,516  107 N/m2. Regangan maksimum didapatkan dari perhitungan manual sebesar 2,310  10-4. Displacement maksimum didapatkan dari perhitungan manual sebesar 1,864  108 mm, sedangkan dari simulasi didapatkan sebesar 1,624  108 mm. Safety factor minimum didapatkan dari perhitungan manual sebesar 11,193, dan perhitungan simulasi didapatkan sebesar 11,736. The frame is one of the most important components in a vehicle, which functions as a support for passengers, engines, suspensions, electrical systems and others. Seeing the function of the frame is very important, so designing a frame must be taken into account well. There are many types of tests that are often used in the design of a frame structure, one of which is the use of computational methods using the Finite Element Analysis (FEA) method. The purpose of this study was to determine the distribution of stress, strain, displacement, and safety factor from the results of static loading on the kart frame. The frame structure was designed and analyzed using Solidworks 2016 software. The material used in the frame is steel AISI 1045 hollow tube 27  3,2 mm, using a rider load of 50 kg and 70 kg. The result of manual calculation shows that the maximum stress is 4,735  107 N/m2, while the simulation results are 4,516  107 N/m2. The maximum strain is obtained from manual calculation of 2,310  10-4. The maximum displacement is obtained from manual calculations of 1,864  108 mm, while the simulation results are 1,624  108 mm. The minimum safety factor obtained from manual calculation is 11,193, and the simulation calculation is 11,736.


1982 ◽  
Vol 104 (4) ◽  
pp. 759-764 ◽  
Author(s):  
J. J. Coy ◽  
C. Hu-Chih Chao

A method of selecting grid size for the finite element analysis of gear tooth deflection is presented. The method is based on a finite element study of two cylinders in line contact, where the criterion for establishing element size was that there be agreement with the classic Hertzian solution for deflection. Many previous finite element studies of gear tooth deflection have not included the full effect of the Hertzian deflection. The present results are applied to calculate deflection for the gear specimen used in the NASA spur gear test rig. Comparisons are made between the present results and the results of two other methods of calculation. The results have application in design of gear tooth profile modifications to reduce noise and dynamic loads.


2018 ◽  
Vol 25 (4) ◽  
pp. 905-920 ◽  
Author(s):  
Diantang Zhang ◽  
Guyu Feng ◽  
Mengyao Sun ◽  
Song Yu ◽  
Yuanhui Gu ◽  
...  

2013 ◽  
Vol 465-466 ◽  
pp. 693-698 ◽  
Author(s):  
Seok Kwan Hong ◽  
Jeong Jin Kang ◽  
Jong Deok Kim ◽  
Heung Kyu Kim ◽  
Sang Yong Lee ◽  
...  

In this study, the tube sinking process for manufacturing the micro Ti-0.2Pd tube (2.4 mm external diameter, 0.4 mm thickness) was simulated by finite element analysis. The external diameter of the initial tube was 5.0 mm. In order to simulate the tube sinking process, the flow stress equation was deducted from the result of the tensile test and friction coefficient was indirectly obtained through the parameter studies. The simulation results showed the simulation error according to the change of diameter predicted to be less than 2%. The defect of the internal surface by stress was found through the experiment result.


2012 ◽  
Vol 482-484 ◽  
pp. 2418-2423
Author(s):  
Feng Kang ◽  
Jing Tao Wang ◽  
Ping Cheng ◽  
Hai Ying Wu

Finite element analysis was used to simulate the evolution of damage in a Mg–3Al–1Zn alloy processed by equal channel angular pressing (ECAP). Oyane criterion for damage was selected to evaluate the fracture characteristics. Finite element modeling was used with experimental data obtained from tension and compression testing. The results show that initial crack may form in severe flow localization (i.e. in the inner corner) and these cracks may propagate, leading to billet segmentation. The flow grid in the simulation results is similar to that in the previous experimental results.


Sign in / Sign up

Export Citation Format

Share Document