stress equation
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 13)

H-INDEX

16
(FIVE YEARS 2)

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaomeng Duan

It is generally accepted that the adsorbed water layer on the surface of the mineral particle has significant effects on the mechanical properties of soils. By defining the concepts of “solid water” and “particle skeleton” after a brief review on adsorbed water, therefore, the mechanical mechanism about how solid water affects the deformation and strength of particle skeleton is theoretically clarified, which could be the physical basis of the reasonability of two assumptive conditions for effective stress equation. Considering solid water as a two-dimensional liquid with appreciable normal strength and lubricity, if soil particles are always wrapped by solid-water layer, the only mechanical effect due to water pressure is to compress particles; while if the interparticle solid water could be extruded undergoing enough force with suitable confinement, the mechanical effects due to increasing water pressure are not only to compress particles more but also to enhance interparticle friction because the indirect interparticle contact could be changed into direct contact to consequently alter the interparticle friction. Because solid water is not likely to be extruded by pressure alone, if the particle compression is negligible relative to the soil-mass compression, two assumptive conditions for effective stress equation are reasonable. Moreover, a simple monitoring test on water content is conducted to certify that the solid-water layer should always exist in soils under ambient conditions, so the ordinarily oven-dried soil samples used in conventional geotechnical tests carried out under ambient conditions could be just “nominally dry” samples with the effects due to solid water.


2021 ◽  
Vol 147 (2) ◽  
pp. 07020003
Author(s):  
Sakineh Fazli Ghiyasabadi ◽  
Ehsan Nikooee ◽  
Ghassem Habibagahi

2020 ◽  
Vol 34 (2) ◽  
pp. 213-222
Author(s):  
Jamin Smitchger ◽  
Dr. Norman Weeden ◽  
Idil Akin ◽  
Tom Warkentin

2020 ◽  
Vol 118 (3) ◽  
pp. 89a
Author(s):  
Otto Schullian ◽  
Reinhard Lipowsky ◽  
Markus S. Miettinen
Keyword(s):  

2020 ◽  
Vol 146 (2) ◽  
pp. 04019135 ◽  
Author(s):  
Chao Zhang ◽  
Ning Lu

Author(s):  
Karthik Selva Kumar Karuppasamy ◽  
Niranjan Sahoo ◽  
Balaji Selvaraj

For the design and development of new machine components, the researchers and engineers must have an extreme understanding of the stress, strain, and the basic equations/laws relating the stress to the strain. In this chapter, the authors show the basic concepts of stress developed in a component concerning the external loading and the loading concerning the body force. In this chapter, the following aspects were proposed to be briefly discussed: type of stresses, introduction to stress at particular node, stress equation relates the equilibrium of body, laws related to transformation of stress, states of stress, and sample solved problems related to the simple state of the stress system.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 566
Author(s):  
James R. Kiniry ◽  
Sumin Kim ◽  
Henri E. Z. Tonnang

With the recent resurgence in interest in models describing maize (Zea mays L.) development rate responses to temperature, this study uses published data to refit the Poikilotherm equation and compare it to broken stick “heat stress” equations. These data were for the development rate of eight open pollinated maize varieties at diverse sites in Africa. The Poikilotherm equation was applied with the original published parameters and after refitting with the data in this study. The heat stress equation was tested after fitting with just the first variety and after fitting with each variety. The Poikilotherm equation with the original parameter values had large errors in predicting development rates in much of the temperature range. The adjusted Poikilotherm equation did much better with the root-mean-square error (RMSE) decreasing from 0.034 to 0.003 (1/day) for a representative variety. The heat stress equation fit to the first variety did better than the Poikilotherm equation when applied to all the varieties. The heat stress equations fitted separately for each variety did not have an improved fit compared to the one heat stress equation. Thus, separate fitting of such an equation for different varieties may not be necessary. The one heat stress equation, the separate heat stress equation, and the Poikilotherm equation each had a better fit than nonlinear Briere et al. curves. The Poikilotherm equation showed promise, realistically capturing the high, low, and optimum rate values measured. All the equations showed promise to some degree for future applications in simulating the maize development rate. When fitting separate regressions for each variety for the heat stress equations, the base temperatures had a mean of 5.3 °C, similar to a previously published value of 6 °C. The last variety had noticeably different rates than the others. This study demonstrated that a simple approach (the heat stress equation) should be adequate in many cases. It also demonstrated that more detailed equations can be useful when a more mechanistic system is desired. Future research could investigate the reasons for the different development rate response of the last variety and investigate similar varieties.


Sign in / Sign up

Export Citation Format

Share Document