scholarly journals Numerical and Experimental Comparison of Ducted and Non-Ducted Propellers

2020 ◽  
Vol 8 (4) ◽  
pp. 257 ◽  
Author(s):  
Diego Villa ◽  
Stefano Gaggero ◽  
Giorgio Tani ◽  
Michele Viviani

Ducted propellers are unconventional systems that are usually adopted for ship propulsion. These devices have recently been studied with medium-fidelity computational fluid dynamics code (based on the potential flow hypothesis) with promising results. However, these tools, even though they provide a good prediction of the forces and moments generated by the blades and the duct, are not able to provide insight into the flow field characteristics due to their crude flow approximations. On the contrary, modern high-fidelity viscous-based computational fluid dynamics codes could give a better description of the near and far-field flow of these particular devices. In the present paper, forces and the most significant features of the flow field around two ducted propellers are analyzed by means of both experimental and computational fluid dynamics approaches. In particular, accelerating and decelerating ducts are considered, and we demonstrate the ability of the adopted solver to accurately predict the performance and the flow field for both types. These results, in particular for the less-studied decelerating duct, designate CFD as a useful tool for reliable designs.

2012 ◽  
Vol 263-266 ◽  
pp. 843-846 ◽  
Author(s):  
Da Zhi Jiang ◽  
Jing Han

To research guide vanes' influences on flow fields of cylinder cage powder classifier at different angles, a study of guide vanes under 3 different angles is therefore undertaken examining air flow behavior. The investigation of these flow field characteristics made use of the computational fluid dynamics (CFD) to simulate the air flow in the classifier. The results indicate that smaller angles of guide vanes can increase velocity but damage the stability of flow fields, and that those larger angles will reduce the velocity.


2005 ◽  
Vol os-14 (1) ◽  
pp. 1558925005os-14
Author(s):  
Holly M. Krutka ◽  
Robert L. Shambaugh ◽  
Dimitrios V. Papavassiliou

This paper is an investigation of the flow fields generated by dual rectangular jets. Specifically, the jets examined are the same as the common slot dies used in the industrial melt blowing process. In this process, a molten polymer is attenuated by air discharging from dual jets. The velocity and turbulence of these flow fields determine the rate and quality of polymer fiber production. The flow field characteristics can be simulated quickly and efficiently using computational fluid dynamics (CFD). These CFD simulations require the use of an appropriate length scale to describe the flow field. This paper describes how these CFD simulations can be used to compare the flow fields generated by different jet geometries.


2011 ◽  
Vol 230-232 ◽  
pp. 582-586
Author(s):  
Tao Sun ◽  
Yi Zhang ◽  
Zhong Yi Wang ◽  
Hai Ou Sun

Vapor seal is an indispensable component in steam turbine for economic and safe operation. The flow characteristics in vapor seal have a significant effect on the performance of vapor seal. Considering the flow field characteristics and engineering applications, the following work has been done: First, the models of the labyrinth glands with stepped teeth have been established through Computational Fluid Dynamics software Fluent. The full-flow simulation result is acquired. Second, based on the numerical results, the characteristics of the flow field in stepped labyrinth seal have been studied. At last, the best structure for stepped labyrinth seal is achieved.


2013 ◽  
Vol 368-370 ◽  
pp. 619-623
Author(s):  
Zhen Liu ◽  
Xiao Ling Wang ◽  
Ai Li Zhang

For the purpose of avoiding the deficiency of the traditional construction ventilation, the ventilation of the underground main powerhouse is simulated by the computational fluid dynamics (CFD) to optimize ventilation parameters. A 3D unsteady RNG k-ε model is performed for construction ventilation in the underground main powerhouse. The air-flow field and CO diffusion in the main powerhouse are simulated and analyzed. The two construction ventilation schemes are modelled for the main powerhouse. The optimized ventilation scheme is obtained by comparing the air volume and pressure distributions of the different ventilation schemes.


2017 ◽  
Vol 77 (3) ◽  
pp. 647-654 ◽  
Author(s):  
Haoming Yang ◽  
David Z. Zhu ◽  
Yanchen Liu

Abstract Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.


2013 ◽  
Vol 662 ◽  
pp. 586-590
Author(s):  
Gang Lu ◽  
Qing Song Yan ◽  
Bai Ping Lu ◽  
Shuai Xu ◽  
Kang Li

Four types of Super Typhoon drip emitter with trapezoidal channel were selected out for the investigation of the flow field of the channel, and the CFD (Computational Fluid Dynamics) method was applied to simulate the micro-field inside the channel. The simulation results showed that the emitter discharge of different turbulent model is 4%-14% bigger than that of the experimental results, the average discharge deviation of κ-ω and RSM model is 5, 4.5 respectively, but the solving efficiency of the κ-ω model is obviously higher than that of the RSM model.


2012 ◽  
Vol 248 ◽  
pp. 391-394
Author(s):  
Wen Zhou Yan ◽  
Wan Li Zhao ◽  
Qiu Yan Li

By using the computational fluid dynamics code, FLUENT, Numerically simulation is investigated for Youngshou power plant. Under the constant ambient temperature, the effects of different wind speed and wind direction on the thermal flow field are qualitatively considered. It was found that when considering about the existing and normally operating power plants, the thermal flow field is more sensitive to wind direction and wind speed. Based on the above results, three improved measures such as: increasing the wind-wall height and accelerating the rotational speed of the fans near the edge of the ACC platform and lengthen or widen the platform are developed to effectively improving the thermal flow field, and enhanced the heat dispersal of ACC.


Author(s):  
Hasham H. Chougule ◽  
Alexander Mirzamoghadam

The objective of this study is to develop a Computational Fluid Dynamics (CFD) based methodology for analyzing and predicting leakage of worn or rub-intended labyrinth seals during operation. The simulations include intended tooth axial offset and numerical modeling of the flow field. The purpose is to predict total leakage through the seal when an axial tooth offset is provided after the intended/unintended rub. Results indicate that as expected, the leakage for the in-line worn land case (i.e. tooth under rub) is higher compared to unworn. Furthermore, the intended rotor/teeth forward axial offset/shift with respect to the rubbed land reduces the seal leakage. The overall leakage of a rubbed seal with axial tooth offset is observed to be considerably reduced, and it can become even less than a small clearance seal designed not to rub. The reduced leakage during steady state is due to a targeted smaller running gap because of tooth offset under the intended/worn land groove shape, higher blockages, higher turbulence and flow deflection as compared to worn seal model without axial tooth offset.


Sign in / Sign up

Export Citation Format

Share Document